

### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

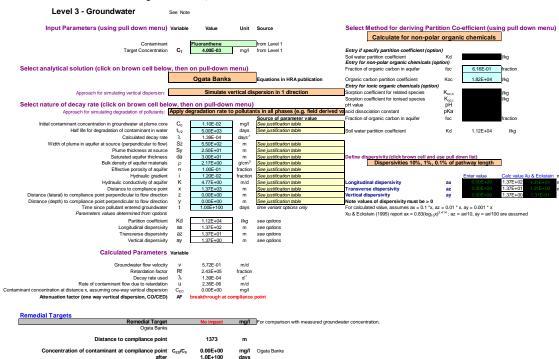
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

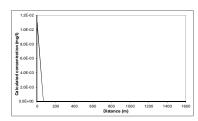
| Details to be completed for e          | ach assessment   |      |                            |     |
|----------------------------------------|------------------|------|----------------------------|-----|
| Site Name:<br>Site Address:            | M54 M6 Link Road | d    |                            |     |
| Completed by:                          | Gabriella Barnes |      |                            |     |
| Date:                                  | 02-Dec-19        |      | Version:                   |     |
| Contaminant                            | Fluoranthene     |      |                            |     |
| Target Concentration (C <sub>T</sub> ) | 0.004            | mg/l | Origin of C <sub>⊤</sub> : | DWS |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.





Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

#### ote

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option in Ogata Bariss.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed: M54 M6 Link Road
Completed by: Gabriella Barnes
Date: #######
Version: 1

#### Calculated concentrations for distance-concentration graph

### Ogata Banks From calculation sheet Distance Concentration

|        | mg/l      |
|--------|-----------|
| 0      | 1.1E-02   |
| 68.7   | 3.85E-22  |
| 137.3  | 1.25E-41  |
| 206.0  | 4.14E-61  |
| 274.6  | 1.40E-80  |
| 343.3  | 4.82E-100 |
| 411.9  | 1.68E-119 |
| 480.6  | 5.87E-139 |
| 549.2  | 2.07E-158 |
| 617.9  | 7.31E-178 |
| 686.5  | 2.60E-197 |
| 755.2  | 9.25E-217 |
| 823.8  | 3.30E-236 |
| 892.5  | 1.18E-255 |
| 961.1  | 4.25E-275 |
| 1029.8 | 1.53E-294 |
| 1098.4 | 0.00E+00  |
| 1167.1 | 0.00E+00  |
| 1235.7 | 0.00E+00  |
| 1304.4 | 0.00E+00  |
| 1373.0 | 0.00E+00  |
|        |           |

Remedial targets worksheet v3.1

[2012/2019.2126

Fluoranthene (DWS) RTM v2.3 bit (Arguery Country Arguery Country Cou



### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

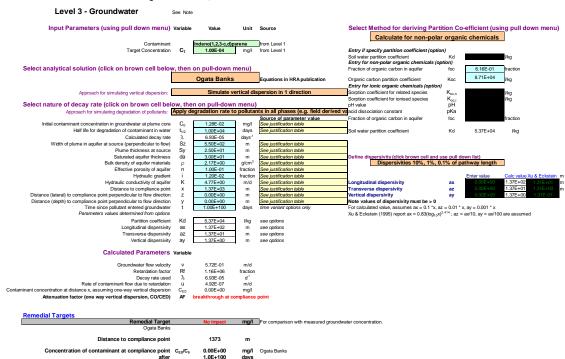
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

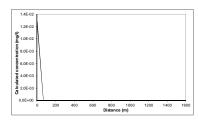
| Details to be completed for e          | ach assessment    |        |                            |     |   |
|----------------------------------------|-------------------|--------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Roa   | ıd     |                            |     |   |
| Completed by:                          | Gabriella Barnes  |        |                            |     |   |
| Date:                                  | 02-Dec-19         |        | Version:                   |     | 1 |
| Contaminant                            | Indeno(1,2,3-c,d) | pyrene |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.0001            | mg/l   | Origin of C <sub>T</sub> : | DWS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.





Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

#### ote

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option in Ogata Bariss.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action. Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed: M54 M6 Link Road
Completed by: Gabriella Barnes
Date: ########
Version: 1

#### Calculated concentrations for distance-concentration graph

| Ogata Bank<br>From calcul |               |
|---------------------------|---------------|
| Distance                  | Concentration |

|        | mg/i      |
|--------|-----------|
| 0      | 1.3E-02   |
| 68.7   | 9.33E-33  |
| 137.3  | 6.28E-63  |
| 206.0  | 4.33E-93  |
| 274.6  | 3.05E-123 |
| 343.3  | 2.18E-153 |
| 411.9  | 1.58E-183 |
| 480.6  | 1.15E-213 |
| 549.2  | 8.40E-244 |
| 617.9  | 6.18E-274 |
| 686.5  | 4.56E-304 |
| 755.2  | 0.00E+00  |
| 823.8  | 0.00E+00  |
| 892.5  | 0.00E+00  |
| 961.1  | 0.00E+00  |
| 1029.8 | 0.00E+00  |
| 1098.4 | 0.00E+00  |
| 1167.1 | 0.00E+00  |
| 1235.7 | 0.00E+00  |
| 1304.4 | 0.00E+00  |
| 1373.0 | 0.00E+00  |

Remedial targets worksheet v3.1
Indepn/1 2 2n -financen (TWS) RTM v3.2 id (Remedial targets)



### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

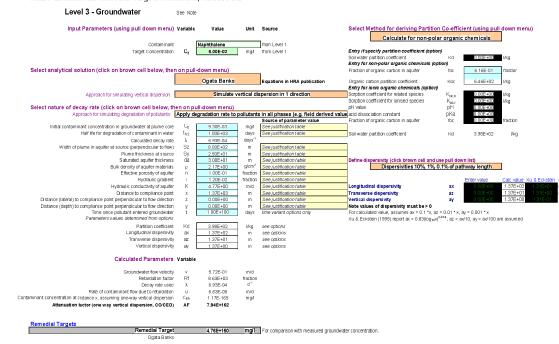
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

| Details to be completed for            | each assessment  |      |                   |     |
|----------------------------------------|------------------|------|-------------------|-----|
| Site Name:<br>Site Address:            | M54 M6 Link Road | d    |                   |     |
| Completed by:                          | Gabriella Barnes |      |                   |     |
| Date:                                  | 02-Dec-19        |      | Version:          |     |
| Contaminant                            | Naphthalene      |      |                   |     |
| Target Concentration (C <sub>T</sub> ) | 0.006            | mg/l | Origin of $C_T$ : | DWS |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).





1 17E-165

mg/l Ogata Banks

Distance to compliance point Concentration of contaminant at compliance point  $c_{\text{ED}}/c_{\text{O}}$ 



Concentration

9.3E-03 6.58E-11 4.31E-19

1.98E-35

1.38F-43

9.74E-52 6.93E-60

4.97E-68

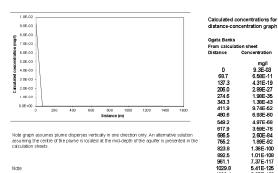
3.59E-76

2.60E-84 1.89E-92

1.38E-100

7.37E-117 5.41E-125 3.97E-133

2 92F-141


1.59E-157

1.17E-165

1098.4

1167 1

1304.4



This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata 8 anks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best desribed by an electron limited degradation such as exidation by O2, NO3, SO4 etc than an alternative solution should be used

| Site being assessed: | M54 M6 Link Road |
|----------------------|------------------|
| Completed by:        | Gabriella Barnes |
| Date:                | 02/12/2019       |
| Version              |                  |

Remedial targets worksheet v3.1



### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

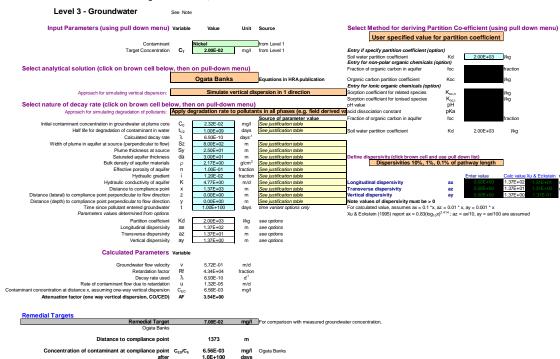
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

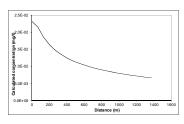
| Details to be completed for e          | ach assessment   |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Roa  | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| 0                                      | Nit a Land       |      |                            |     |   |
| Contaminant                            | Nickel           |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.02             | mg/l | Origin of C <sub>T</sub> : | DWS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.



Environment



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

#### ote

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks. By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Ste being assessed: M54 M6 Link Road Completed by: Gabriella Barnes Date: ####### Version: 1

#### Calculated concentrations for distance-concentration graph

| gata Bank  | s             |
|------------|---------------|
| rom calcul | ation sheet   |
| listance   | Concentration |

|        | mg/l     |
|--------|----------|
| 0      | 2.3E-02  |
| 68.7   | 2.15E-02 |
| 137.3  | 1.85E-02 |
| 206.0  | 1.62E-02 |
| 274.6  | 1.46E-02 |
| 343.3  | 1.33E-02 |
| 411.9  | 1.23E-02 |
| 480.6  | 1.15E-02 |
| 549.2  | 1.08E-02 |
| 617.9  | 1.02E-02 |
| 686.5  | 9.71E-03 |
| 755.2  | 9.25E-03 |
| 823.8  | 8.84E-03 |
| 892.5  | 8.47E-03 |
| 961.1  | 8.13E-03 |
| 1029.8 | 7.82E-03 |
| 1098.4 | 7.53E-03 |
| 1167.1 | 7.26E-03 |
| 1235.7 | 7.01E-03 |
| 1304.4 | 6.78E-03 |
| 1373.0 | 6.56E-03 |

Remedial targets worksheet v3.1

Nickel (DWS) RTM 22.84 (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2012) (2



### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

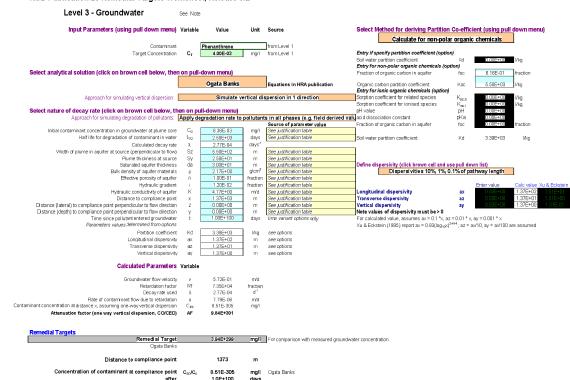
| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
|                                        |                  |      |                            |     |   |
| Contaminant                            | Phenanthrene     |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.004            | mg/l | Origin of C <sub>T</sub> : | DWS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

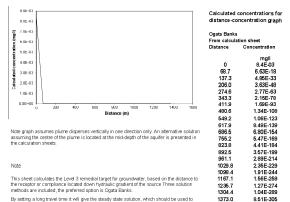
Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.


Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background


It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target.

The recommended value for time when calculating the remedial target is 9.9E+99.



Environment Agency



| This worksheet should be used if pollutant transport and degradation is best described by first order reaction. If degradation is best described by an electron limited degradation suc as oxidation by O2, NO3, SO4 etc than an alternative solution should be used |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                      |  |

with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

The measured groundwater concentration should be compared

calculate remedial targets.



### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

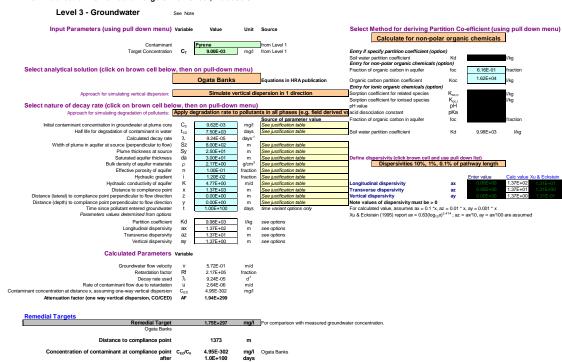
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

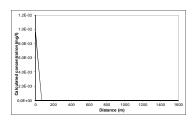
| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Roa  | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| 0                                      | Demons           |      |                            |     |   |
| Contaminant                            | Pyrene           |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.009            | mg/l | Origin of C <sub>T</sub> : | DWS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.





Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

#### Note

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hybraulic gradient of the source Three solution methods are included, the preferency option is Ogast Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

calculate remedial targets.

The measured groundwater concentration should be compared

with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

| Ogata Banks   |               |
|---------------|---------------|
| From calculat |               |
| Distance      | Concentration |
|               | mg/l          |
| 0             | 9.6E-03       |
| 68.7          | 1.03E-17      |
| 137.3         | 1.02E-32      |
| 206.0         | 1.04E-47      |
| 274.6         | 1.08E-62      |
| 343.3         | 1.14E-77      |
| 411.9         | 1.22E-92      |
| 480.6         | 1.32E-107     |
| 549.2         | 1.43E-122     |
| 617.9         | 1.56E-137     |
| 686.5         | 1.72E-152     |
| 755.2         | 1.89E-167     |
| 823.8         | 2.09E-182     |
| 892.5         | 2.32E-197     |
| 961.1         | 2.57E-212     |
| 1029.8        | 2.86E-227     |
| 1098.4        | 3.18E-242     |
| 1167.1        | 3.55E-257     |
| 1235.7        | 3.96E-272     |
| 1304.4        | 4.43E-287     |
| 1373.0        | 4.95E-302     |
|               |               |



### Hydrogeological risk assessment for land contamination

#### Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions).

| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Roa  | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
|                                        |                  |      |                            |     |   |
| Contaminant                            | Xylene Total     |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.5              | mg/l | Origin of C <sub>T</sub> : | DWS |   |

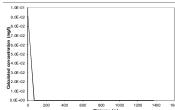
This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background


It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target

The recommended value for time when calculating the remedial target is 9.9E+99.



Environment Agency



Note grap assuming the calcul

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best desribed by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

|                 |          |              |               |        |            |           |                   |                             | concentrations for<br>ncentration graph |
|-----------------|----------|--------------|---------------|--------|------------|-----------|-------------------|-----------------------------|-----------------------------------------|
| 1               |          |              |               |        |            |           |                   | Ogata Banks<br>From calcula |                                         |
| 1               |          |              |               |        |            |           |                   | Distance                    | Concentration                           |
| 1               |          |              |               |        |            |           |                   |                             | mg/l                                    |
| 11              |          |              |               |        |            |           |                   | 0                           | 9.1E-02                                 |
| 11              |          |              |               |        |            |           |                   | 68.7                        | 1.92E-11                                |
| 11              |          |              |               |        |            |           |                   | 137.3                       | 3.76E-21                                |
| 11              |          |              |               |        |            |           |                   | 206.0                       | 7.51E-31                                |
| + 1             |          |              |               |        |            |           |                   | 274.6                       | 1.54E-40                                |
|                 |          |              |               |        |            | _         |                   | 343.3                       | 3.20E-50                                |
| 0               | 200 40   | 0 600        |               | 1000   | 1200       | 1400      | 1600              | 411.9                       | 6.74E-60                                |
|                 |          |              | Distance (r   | n)     |            |           |                   | 480.6                       | 1.43E-69                                |
|                 |          |              |               |        |            |           |                   | 549.2                       | 3.07E-79                                |
|                 |          |              |               |        |            |           |                   | 617.9                       | 6.60E-89                                |
|                 |          |              |               |        |            |           | ernative solution | 686.5                       | 1.43E-98                                |
| ng the culation |          | piume is ioc | ated at the I | mia-ae | ptn or tne | aquirer i | s presented in    | 755.2                       | 3.09E-108                               |
| uiatiori        | oriecto. |              |               |        |            |           |                   | 823.8                       | 6.73E-118                               |
|                 |          |              |               |        |            |           |                   | 892.5                       | 1.47E-127                               |
|                 |          |              |               |        |            |           |                   | 961.1                       | 3.21E-137                               |
|                 |          |              |               |        |            |           |                   | 1029.8                      | 7.03E-147                               |
|                 |          |              |               |        |            |           |                   | 1098.4                      | 1.54E-156                               |

1167.1

1235.7

1304.4

3.38E-166

7.44E-176

1.64E-185

3.61E-195

Remedial targets worksheet v3.1 02/12/2019, 21:40



#### **Simulation Details**

| Project Number | 60536736         |
|----------------|------------------|
| Project Title  | M54/M6 Link Road |
| Date           | 28-Nov-19        |

| Simulation Details | Simulation detailing the potential contaminant concentration in groundwater affecting the surface watercourse Latherford Brook |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|

0.087



### LEVEL 3 (GROUNDWATER) ASSESSMENT - INPUTS & JUSTIFICATION

| Project Number | 60536736         |
|----------------|------------------|
| Project Title  | M54/M6 Link Road |
| Date           | 28-Nov-19        |

| Simulation Details | Simulation detailing the potential contaminant concentration in groundwater affecting the surface watercourse Latherford Brook |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|

| Parameter                           | Units             | Input Value(s) | Source / Justification                                                                 |
|-------------------------------------|-------------------|----------------|----------------------------------------------------------------------------------------|
| Infiltration                        | mm/year           | 14.4           | Met Office - Based on unsurfaced ground wiith annual average rainfall of 57.5mm/year   |
| Saturated aquifer thickness         | m                 | 30             | Assumed thickness of bedrock aquifer                                                   |
| Bulk density of aquifer materials   | g/cm <sup>3</sup> | 2.17           | Average Value from geotechnical laboratory analysis over weathered bedrock and bedrock |
| Effective porosity of aquifer       | fraction          | 0.1            | Value for Sandstone from Domenico & Schwartz, 1990                                     |
| Hydraulic gradient                  | fraction          | 0.012          | Gradients taken from GW monitoring levels between BH18 and BH27                        |
| Hydraulic conductivity of aquifer   | m/s               | 5.52E-06       | Average value from geotechnical laboratory analysis                                    |
| Hydraulic conductivity of aquifer   | m/d               | 4.77E-01       | Calculated in m/d                                                                      |
| Fraction of Organic Carbon          | fraction          | 0.616          | Taken from chemical screening data                                                     |
| Distance to compliance point        | m                 | 139            | BH21 closest borehole with exceedances south of Latherford Brook                       |
| Longitudinal dispersivity           | m                 | 13.9           | 10% of pathway length                                                                  |
| Transverse dispersivity             | m                 | 1.39           | 1% of pathway length                                                                   |
| Width of plume in aquifer at source | m                 | 550.0 800.0    | Width at BH03 and width at BH26 (Areas of maximum concentration)                       |
| Plume thickness at source           | m                 | 25             | Assumed thickness of plume                                                             |

#### CONTAMINANT SPECIFIC INPUTS

| Project Number | 60536736         |
|----------------|------------------|
| Project Title  | M54/M6 Link Road |
| Date           | 28-Nov-19        |

Simulation Details Simulation detailing the potential contaminant concentration in groundwater affecting the surface watercourse Latherford Brook

| Determinand                       | Henry's Law<br>Constant | Source             | Organic C - water partition coefficient (Koc) | Source                                        | Soil-Water Partition Coefficient (Kd) | Source           | Background<br>Concentration in<br>Groundwater | Source            | Half-Life of Contaminant in Groundwater | Source                    | Initial contaminant<br>concentration in<br>groundwater | Source                 |
|-----------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------|------------------|-----------------------------------------------|-------------------|-----------------------------------------|---------------------------|--------------------------------------------------------|------------------------|
|                                   | dimensionless           |                    | Vkg                                           |                                               | l/kg                                  |                  | mg/l                                          |                   | days                                    |                           | mg/l                                                   |                        |
| Ethylbenzene (EQS)                | 1.39E-01                | LQWCIEH 2009, Ti   | 4.47E+02                                      | Science Report - SC050021/SR7                 |                                       |                  | 0.01                                          | Half of EQS value | 5.0E+02                                 | EA: The rationale for the | 0.045                                                  | Chemical Sreening data |
| Xylene Total (EQS)                | 1.04E-01                | LQM/CIEH 2009, Ti  | 4.54E+02                                      | Science Report - SC050021/SR7                 |                                       |                  | 0.015                                         | Half of EQS value | 5.0E+02                                 | EA: The rationale for the | 0.091                                                  | Chemical Sreening data |
| Ammoniacal Nitrogen (EQS)         |                         |                    |                                               |                                               | 1.0                                   | CONSIM           | 0.15                                          | Half of EQS value | 2.2E+03                                 | EA: The rationale for the | 5.46                                                   | Chemical Sreening data |
| Naphthalene (EQS)                 | 6.62E-03                | Science Report - S | 6.46E+02                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 0.001                                         | Half of EQS value | 1.0E+03                                 | EA: The rationale for the | 0.00749                                                | Chemical Sreening data |
| Anthracene (EQS)                  | 1.81E-04                | LQWCIEH 2009, To   | 5.62E+03                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 0.0001                                        | Half of EQS value | 3.0E+03                                 | URS/PAHs: The ration      | 0.00220                                                | Chemical Sreening data |
| Fluoranthene (EQS)                | 6.29E-05                | Science Report - S | 1.82E+04                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 3.2E-06                                       | Half of EQS value | 5.0E+03                                 | URS/PAHs: The ration      | 0.01100                                                | Chemical Sreening data |
| Benzo(a) pyrene (EQS)             | 1.76E-06                | Science Report - S | 1.29E+05                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 0.000000085                                   | Half of EQS value | 1.0E+04                                 | (3) URS/PAHs: The ra      | 0.0159                                                 | Chemical Sreening data |
| Benzo(g,h,i)perylene (EQS)        | 2.86E-06                | LQMCIEH 2009, Ti   | 4.17E+05                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 0.0000041                                     | Half of EQS value | 1.0E+04                                 | (3) URS/PAHs: The ra      | 0.004                                                  | Chemical Sreening data |
| Benzo(b)fluoranthene (EQS)        | 2.05E-06                | Science Report - S | 1.05E+05                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 0.0000085                                     | Half of EQS value | 1.0E+04                                 | (3) URS/PAHs: The ra      | 0.02450                                                | Chemical Sreening data |
| Benzo(k)fluoranthene (EQS)        | 1.74E-06                | Science Report - S | 1.48E+05                                      | LQM/CIEH 2009, Tremperature corrected to 10oC |                                       |                  | 0.0000085                                     | Half of EQS value | 1.0E+04                                 | (3) URS/PAHs: The ra      | 0.00774                                                | Chemical Sreening data |
| Phenol (EQS)                      | 8.35E-06                | Science Report - S | 8.32E+01                                      | Science Report - SC050021/SR7                 |                                       |                  | 0.00385                                       | Half of EQS value | 3.5E+02                                 | EA: The rationale for the | 0.08700                                                | Chemical Sreening data |
| Bis(2-ethylhexyl) phthalate (EQS) | 5.33E-05                | h calc, compensate | 8.74E+04                                      | www.toxnet.nlm.nih.gov                        |                                       |                  | 0.00065                                       | Half of EQS value | 1.0E+04                                 | URS/A&H: The rational     | 0.12700                                                | Chemical Sreening data |
| Cadmium (EQS)                     |                         |                    |                                               |                                               | 2560.0                                | CLEA UK          | 0.00004                                       | Half of EQS value | 1.0E+09                                 | URS CWRA DATABA           | 0.00461                                                | Chemical Sreening data |
| Chromium (hexavalent) (EQS)       |                         |                    |                                               |                                               | 4800.0                                | CLEA UK          | 0.0017                                        | Half of EQS value | 1.0E+09                                 | URS CWRA DATABA           | 0.02780                                                | Chemical Sreening data |
| Copper (EQS)                      |                         |                    |                                               |                                               | 35.0                                  | CLEA UK          | 5.0E-04                                       | Half of EQS value | 1.0E+09                                 | URS CWRA DATABA           | 0.01240                                                | Chemical Sreening data |
| Nickel (EQS)                      |                         |                    |                                               |                                               | 2000.0                                | CLEA UK          | 0.002                                         | Half of EQS value | 1.0E+09                                 | URS CWRA DATABA           | 0.0232                                                 | Chemical Sreening data |
| Zinc (EQS)                        |                         |                    |                                               |                                               | 36.0                                  | 2001, USEPA, Sup | 0.00545                                       | Half of EQS value | 1.0E+09                                 | URS CWRA DATABA           | 0.0401                                                 | Chemical Sreening data |



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

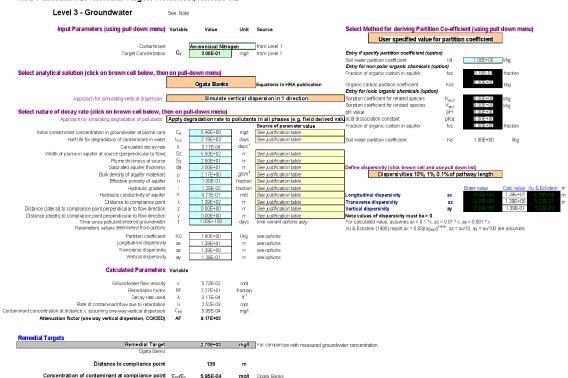
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for ea                     | ach assessment                |             |                            |     |   |
|----------------------------------------------------|-------------------------------|-------------|----------------------------|-----|---|
| Site Name:<br>Site Address:                        | M54 M6 Link Road              |             |                            |     |   |
| Completed by:<br>Date:                             | Gabriella Barnes<br>02-Dec-19 |             | Version:                   |     | 1 |
| Contaminant Target Concentration (C <sub>T</sub> ) | Ammoniacal Nitro              | gen<br>mg/l | Origin of C <sub>⊤</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

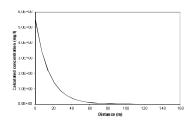

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).




Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.

1.0E+100

davs

Environment



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a his worksteet studie be used in political danspot and begradation is dest described by first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

ma/l

| Ogata Bank  | 5             |
|-------------|---------------|
| From calcul | ation sheet   |
| Distance    | Concentration |

| 0     | 5.5E+00  |
|-------|----------|
| 7.0   | 3.46E+00 |
| 13.9  | 2.19E+0  |
| 20.9  | 1.39E+0  |
| 27.8  | 8.80E-01 |
| 34.8  | 5.58E-01 |
| 41.7  | 3.54E-01 |
| 48.7  | 2.24E-01 |
| 55.6  | 1.42E-01 |
| 62.6  | 9.00E-02 |
| 69.5  | 5.70E-02 |
| 76.5  | 3.61E-02 |
| 83.4  | 2.29E-02 |
| 90.4  | 1.45E-02 |
| 97.3  | 9.19E-03 |
| 104.3 | 5.83E-03 |
| 111.2 | 3.69E-03 |
| 118.2 | 2.34E-03 |
| 125.1 | 1.48E-03 |
| 132.1 | 9.40E-04 |
| 139.0 | 5.95E-04 |
|       |          |



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

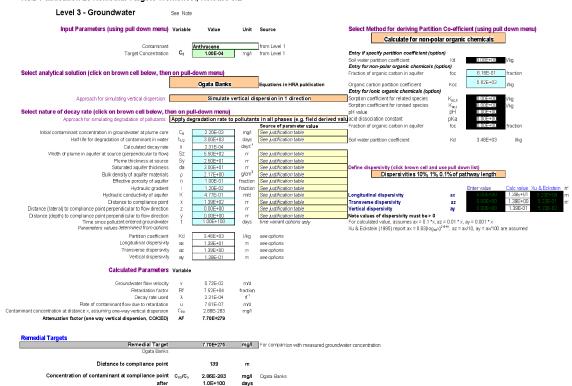
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

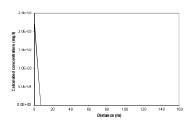
| Details to be completed for e          | each assessment      |      |                            |     |
|----------------------------------------|----------------------|------|----------------------------|-----|
| Site Name:<br>Site Address:            | M54 M6 Link Road     | t    |                            |     |
| Completed by:                          | Gabriella Barnes     |      | Manalana                   |     |
| Date:<br>Contaminant                   | 02-Dec-19 Anthracene |      | Version:                   |     |
| Target Concentration (C <sub>T</sub> ) | 0.0001               | mg/l | Origin of C <sub>T</sub> : | EQS |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.

### Environment



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a his worksteet studie be used in political danspot and begradation is dest described by first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

ma/l

| Ogata Bank  | 5             |
|-------------|---------------|
| From calcul | ation sheet   |
| Distance    | Concentration |

|       | mg/i       |
|-------|------------|
| 0     | 2.2E-03    |
| 7.0   | 2.23E-17   |
| 13.9  | 2.26E-31   |
| 20.9  | 2.29E-45   |
| 27.8  | 2.32E-59   |
| 34.8  | 2.35E-73   |
| 41.7  | 2.38E-87   |
| 48.7  | 2.41E-10   |
| 55.6  | 2.44E-116  |
| 62.6  | 2.47 E-129 |
| 69.5  | 2.51E-14   |
| 76.5  | 2.54E-15   |
| 83.4  | 2.57E-17   |
| 90.4  | 2.61 E-18  |
| 97.3  | 2.64E-199  |
| 104.3 | 2.68E-21   |
| 111.2 | 2.71E-22   |
| 118.2 | 2.75E-24   |
| 25.1  | 2.78E-256  |
| 32.1  | 2.82E-26   |
| 139.0 | 2.86E-28   |
|       |            |



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

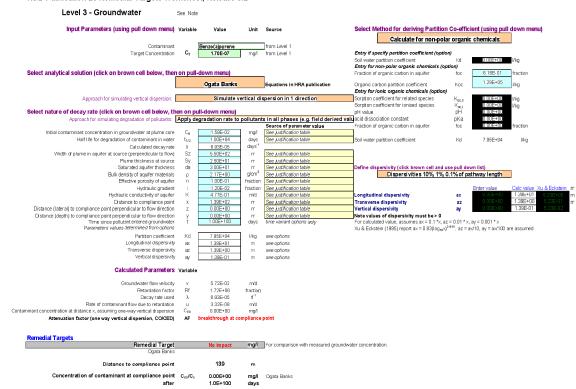
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

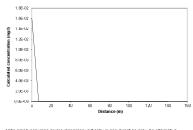
| Details to be completed for e          | each assessment          |      |                            |     |
|----------------------------------------|--------------------------|------|----------------------------|-----|
| Site Name:<br>Site Address:            | M54 M6 Link Road         | d    |                            |     |
| Completed by:                          | Gabriella Barnes         |      | Manaiana                   |     |
| Date:<br>Contaminant                   | 02-Dec-19 Benzo(a)pyrene |      | Version:                   |     |
| Target Concentration (C <sub>T</sub> ) | 0.00000017               | mg/l | Origin of C <sub>T</sub> : | EQS |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.





Calculated concentrations for distance-concentration graph

Ogata Banks From calculation sheet Distance Concentration 1.6E-02

7.0 2 06F-39 13.9 20.9 2.68E-76 3.47E-113 27.8 34.8 41.7 4.50E-150 5.84E-187 7.57E-224 48.7 9.82E-261 1.27E-297 55.6 62.6 69.5 76.5 0.00E+00 0.00E+00 0.00E+00 83.4 0.00E+00 90.4 97.3 104.3 0.00E+00 0.005+00 0.00E+00 1112 0.005+00 118.2 0.00E+00 125.1 132.1 0.00E+00 139 0 0.005+00

Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed M54 M6 Link Road



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

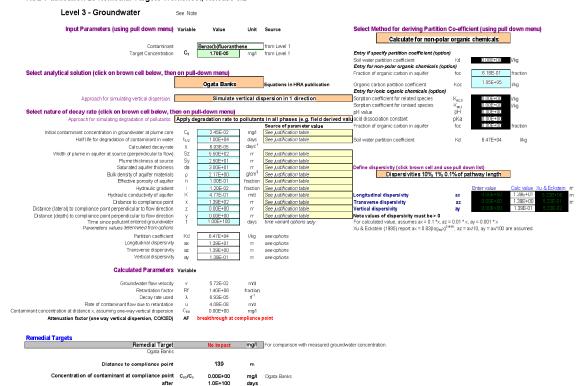
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

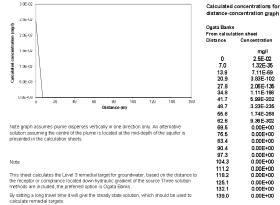
| Details to be completed for e          | each assessment  |       |                            |     |   |
|----------------------------------------|------------------|-------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Roa  | ad    |                            |     |   |
| Completed by:<br>Date:                 | Gabriella Barnes | 3     | Version:                   |     | 1 |
| Contaminant                            | Benzo(b)fluoran  | thene | veroioni                   |     | • |
| Target Concentration (C <sub>T</sub> ) | 0.000017         | mg/l  | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.



Environment Agency



Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99. This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

| Site being assess | ed M54 M6 Link Road |  |
|-------------------|---------------------|--|
| Completed by:     | Gabriella Barnes    |  |
| Date:             | 02/12/2019          |  |
| Version:          | 1                   |  |

The measured groundwater concentration should be compared

with the Level 3 remedial target to determine the need for further action

02/12/2019, 18:27 Benzo(b)fluoranthene (EQS) RTM v3.2 xlsLevel3 Groundwater



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

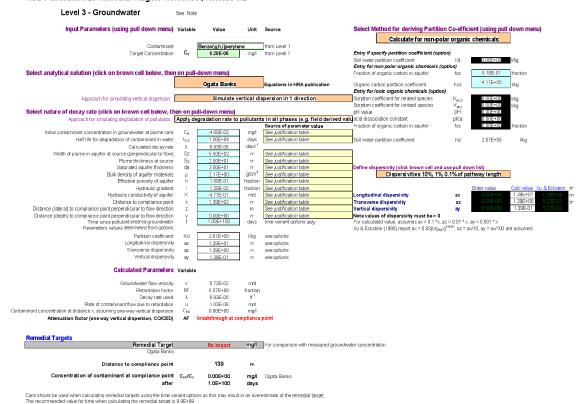
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Ro   | ad   |                            |     |   |
| Completed by:<br>Date:                 | Gabriella Barnes | 5    | Version:                   |     | 1 |
| Contaminant                            | Benzo(g,h,i)pery | lene | version.                   |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.0000082        | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).





Calculated concentrations for

distance-concentration graph

Concentration

4.0E-03

1.57E-69

6.14E-136 2.41E-202

9.44E-269

0.00E+00

0.00E+00

0.005+00 0.00E+00

0.00E+00 0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.005+00

0.00E+00

0.005+00

0.00E+00

0.00E+00

0.005+00

Ogata Banks

Distance

7.0

13.9 20.9

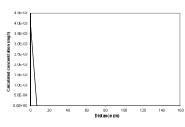
27.8 34.8 41.7

48.7

55.6

62.6 69.5 76.5

83.4


90.4 97.3 104.3

1112

118.2

125.1 132.1

139 0



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



02/12/2019, 18:30 Benzo(g,h,i)perylene (EQS) RTM v3.2 xlsLevel3 Groundwater



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

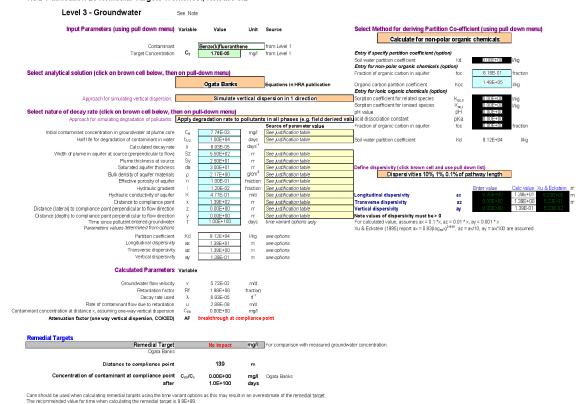
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

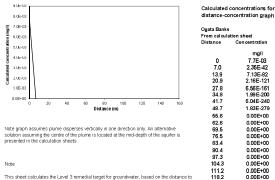
IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for ea         | ach assessment                |      |                            |     |   |
|----------------------------------------|-------------------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road              | t    |                            |     |   |
| Completed by:<br>Date:                 | Gabriella Barnes<br>02-Dec-19 |      | Version:                   |     | 1 |
| Contaminant                            | Benzo(k)fluoranth             | ene  |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.000017                      | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.


Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Environment



125.1 132.1

139 0

0.00E+00

0.005+00

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks. By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

| Site being assessed: | M64 M8 Link Road |
|----------------------|------------------|
| Completed by:        | Gabriella Barnes |
| Date:                | 02/12/2019       |
| Version:             | 1                |

02/12/2019, 18:31 Benzo(k)fluoranthene (EQS) RTM v3.2:xlsLevel3 Groundwater



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

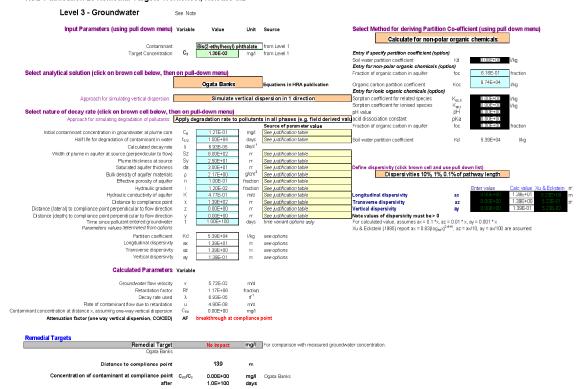
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | ach assessment                |           |                            |     |   |
|----------------------------------------|-------------------------------|-----------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road              | d         |                            |     |   |
| Completed by:<br>Date:                 | Gabriella Barnes<br>02-Dec-19 |           | Version:                   |     | 1 |
| Contaminant                            | Bis(2-ethylhexyl)             | phthalate |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.0013                        | mg/l      | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.



Environment

Calculated concentrations for

distance-concentration graph

Concentration

1.3E-01

5.72E-32 2.57E-62

1 16F-92

5.22E-123

2.35 E-153

4 76F-214

2.14E-244

9.64E-275 4.34E-305

0.00E+00

0.00E+00

0.00E+00

0.005+00

0.00E+00

0.005+00

0.00E+00

0.00E+00

0.005+00

1.06E-183

Ogata Banks

7.0

13.9 20.9

27.8 34.8 41.7

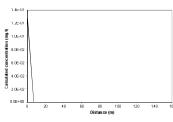
48.7

55.6

62.6 69.5 76.5

83.4

90.4 97.3 104.3


1112

118.2

125.1 132.1

139 0

Distance



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is

presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks. By setting a long travel time it will give the steady state solution, which should be used to

calculate remedial targets. The measured groundwater concentration should be compared

with the Level 3 remedial target to determine the need for further action Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



03/12/2019, 07:48 Bis(2-ethylhexyl)phthalate (EQS) RTM v3.2x/sLevel3 Groundwater



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

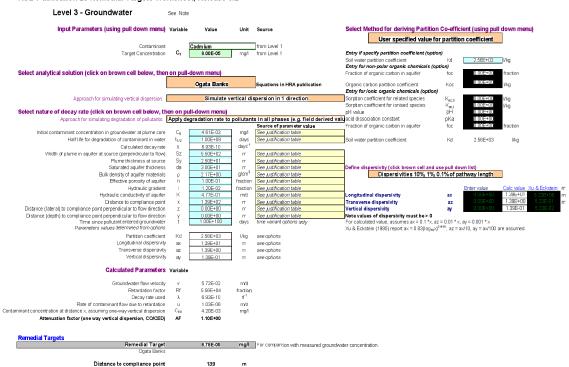
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Cadmium          |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.00008          | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

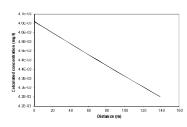
Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.

4 20F-03


1.0E+100

ma/l Ogata Banks

davs

Concentration of contaminant at compliance point Cm/Cn

### Environment



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a his worksteet studie be used in political danspot and begradation is dest described by first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

| Ogata Bank  | 5             |
|-------------|---------------|
| From calcul | ation sheet   |
| Distance    | Concentration |

|       | mg/i     |
|-------|----------|
| 0     | 4.6E-03  |
| 7.0   | 4.59E-03 |
| 13.9  | 4.57E-03 |
| 20.9  | 4.55E-0  |
| 27.8  | 4.53E-03 |
| 34.8  | 4.50E-0  |
| 41.7  | 4.48E-0  |
| 48.7  | 4.46E-03 |
| 55.6  | 4.44E-03 |
| 62.6  | 4.42E-0  |
| 69.5  | 4.40E-0  |
| 76.5  | 4.38E-0  |
| 83.4  | 4.36E-0  |
| 90.4  | 4.34E-0  |
| 97.3  | 4.32E-0  |
| 104.3 | 4.30E-0  |
| 111.2 | 4.28E-0  |
| 118.2 | 4.26E-0  |
| 125.1 | 4.24E-0  |
| 132.1 | 4.22E-0  |
| 139.0 | 4.20E-0  |



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

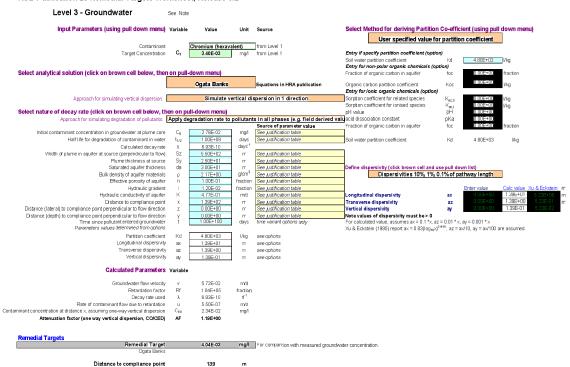
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | each assessment               |         |                            |     |
|----------------------------------------|-------------------------------|---------|----------------------------|-----|
| Site Name:<br>Site Address:            | M54 M6 Link Roa               | ıd      |                            |     |
| Completed by:<br>Date:                 | Gabriella Barnes<br>02-Dec-19 |         | Version:                   |     |
| Contaminant                            | Chromium (hexa                | valent) |                            |     |
| Target Concentration (C <sub>T</sub> ) | 0.0034                        | mg/l    | Origin of C <sub>T</sub> : | EQS |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

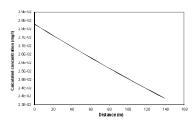
Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.

2.34F-02


1.0E+100

ma/l Ogata Banks

davs

Concentration of contaminant at compliance point Cm/Cn





Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a his worksteet studie be used in political danspot and begradation is dest described by first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

ma/l

| Ogata Banks  |               |
|--------------|---------------|
| From calcula | tion sheet    |
| Distance     | Concentration |

| 0     | 2.8E-02  |
|-------|----------|
| 7.0   | 2.76E-02 |
| 13.9  | 2.73E-02 |
| 20.9  | 2.71E-02 |
| 27.8  | 2.69E-02 |
| 34.8  | 2.66E-02 |
| 41.7  | 2.64E-02 |
| 48.7  | 2.62E-02 |
| 55.6  | 2.59E-02 |
| 62.6  | 2.57E-02 |
| 69.5  | 2.55E-02 |
| 76.5  | 2.53E-02 |
| 83.4  | 2.51E-02 |
| 90.4  | 2.49E-02 |
| 97.3  | 2.46E-02 |
| 104.3 | 2.44E-02 |
| 111.2 | 2.42E-02 |
| 118.2 | 2.40E-02 |
| 125.1 | 2.38E-02 |
| 132.1 | 2.36E-02 |
| 139.0 | 2.34E-02 |
|       |          |



First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

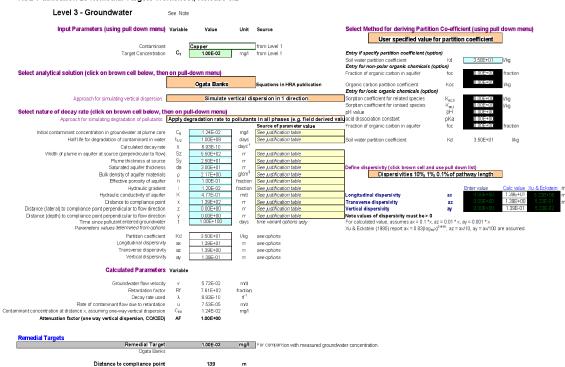
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Copper           |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.001            | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

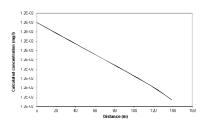
Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.

1.24F-02


1.0E+100

ma/l Ogata Banks

davs

Concentration of contaminant at compliance point Cm/Cn





Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a his worksteet studie be used in political danspot and begradation is dest described by first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

| Ogata Banks            | i             |  |  |  |  |
|------------------------|---------------|--|--|--|--|
| From calculation sheet |               |  |  |  |  |
| Distance               | Concentration |  |  |  |  |

| U     | 1.ZE-02  |
|-------|----------|
| 7.0   | 1.24E-02 |
| 13.9  | 1.24E-02 |
| 20.9  | 1.24E-02 |
| 27.8  | 1.24E-02 |
| 34.8  | 1.24E-02 |
| 41.7  | 1.24E-02 |
| 48.7  | 1.24E-02 |
| 55.6  | 1.24E-02 |
| 62.6  | 1.24E-02 |
| 69.5  | 1.24E-02 |
| 76.5  | 1.24E-02 |
| 83.4  | 1.24E-02 |
| 90.4  | 1.24E-02 |
| 97.3  | 1.24E-02 |
| 104.3 | 1.24E-02 |
| 111.2 | 1.24E-02 |
| 118.2 | 1.24E-02 |
| 125.1 | 1.24E-02 |
| 132.1 | 1.24E-02 |
| 139.0 | 1.24E-02 |
|       |          |



# Hydrogeological risk assessment for land contamination Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency.

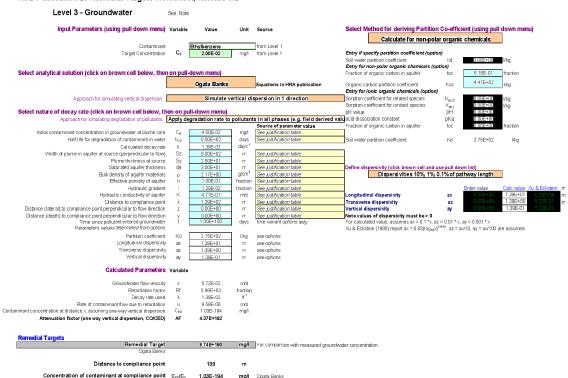
All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Roa  | d    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Ethylbenzene     |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.02             | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

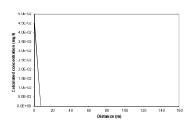

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).




Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.

1.0E+100

davs

Environment



Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a his worksteet studie be used in political danspot and begradation is dest described by first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



Calculated concentrations for distance-concentration graph

ma/l

| Ogata Banks  |              |
|--------------|--------------|
| From calcula | tion sheet   |
| Distance     | Concentratio |

|      | mga       |
|------|-----------|
| 0    | 4.5E-02   |
| 7.0  | 1.05E-11  |
| 3.9  | 2.45E-21  |
| 0.9  | 5.72E-31  |
| 7.8  | 1.33E-40  |
| 4.8  | 3.11E-50  |
| 1.7  | 7.26E-60  |
| 8.7  | 1.69E-69  |
| 5.6  | 3.95E-79  |
| 2.6  | 9.23E-89  |
| 9.5  | 2.15E-98  |
| 6.5  | 5.02E-108 |
| 3.4  | 1.17E-117 |
| 0.4  | 2.74E-127 |
| 7.3  | 6.38E-137 |
| 14.3 | 1.49E-146 |
| 1.2  | 3.47E-156 |
| 8.2  | 8.11E-166 |
| 5.1  | 1.89E-175 |
| 2.1  | 4.41E-185 |
| 9.0  | 1.03E-194 |
|      |           |



# Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

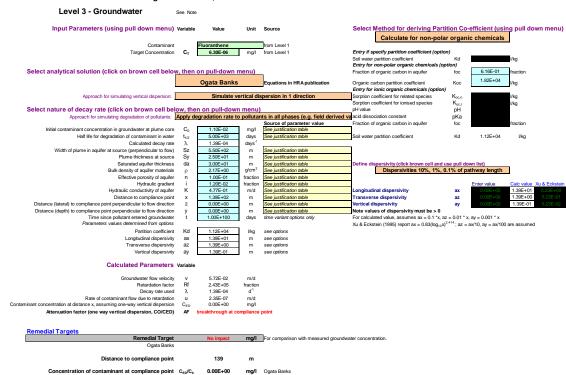
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

| Details to be completed for e          | ach assessment   |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | l    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Fluoranthene     |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.0000063        | mg/l | Origin of C <sub>T</sub> : | EQS |   |

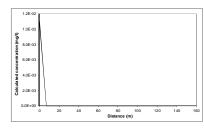
This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.

Data carried forward from an earlier worksheet are identified by a light green background


It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



1.0E+100

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.





Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

### Note

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action. Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best desribed by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed: M54 M5 Link Road
Completed by: Gabriella Barnes
Date: 02/12/2019
Version: 1

# Calculated concentrations for distance-concentration graph

### Ogata Banks From calculation sheet

| Distance | Concentration |
|----------|---------------|
|          | mg/l          |
| 0        | 1.1E-02       |
| 7.0      | 3.15E-22      |
| 13.9     | 9.00E-42      |
| 20.9     | 2.57E-61      |
| 27.8     | 7.36E-81      |
| 34.8     | 2.10E-100     |
| 41.7     | 6.02E-120     |
| 48.7     | 1.72E-139     |
| 55.6     | 4.92E-159     |
| 62.6     | 1.41E-178     |
| 69.5     | 4.03E-198     |
| 76.5     | 1.15E-217     |
| 83.4     | 3.29E-237     |
| 90.4     | 9.42E-257     |
| 97.3     | 2.69E-276     |
| 104.3    | 7.71E-296     |
| 111.2    | 0.00E+00      |
| 118.2    | 0.00E+00      |
| 125.1    | 0.00E+00      |
| 132.1    | 0.00E+00      |
| 139.0    | 0.00E+00      |
|          |               |

Remedial targets worksheet v3.1

Fluoranthene (EQS) RTIM v2.3 bit V3.2 Size V3.0 (2012/2019, 07.75)

Fluoranthene (EQS) RTIM v2.3 bit V3.2 (2012/2019, 07.75)



# Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

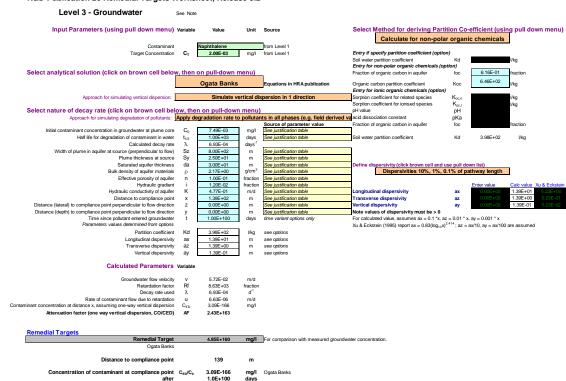
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

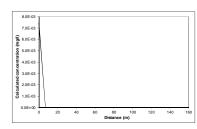
| Details to be completed for e          | ach assessment   |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | i    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Naphthalene      |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.002            | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.







Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

### Note

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best desribed by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed: MS4 M6 Link Road
Completed by: Gabriella Barnes
Date: 02/12/2019
Version: 1

# Calculated concentrations for

| distance-c   | oncentration |
|--------------|--------------|
| Ogata Bank   | s            |
| From calcula | ation sheet  |
| Distance     | Concentrat   |
|              | mg           |
| 0            | 7.5E-        |
| 7.0          | 5.07E        |
| 13.9         | 3.44E        |
| 20.9         | 2.33E        |
| 27.8         | 1.58E        |
| 34.8         | 1.07E        |
| 41.7         | 7.23E        |
| 48.7         | 4 90F        |

|       | mg/l      |
|-------|-----------|
| 0     | 7.5E-03   |
| 7.0   | 5.07E-11  |
| 13.9  | 3.44E-19  |
| 20.9  | 2.33E-27  |
| 27.8  | 1.58E-35  |
| 34.8  | 1.07E-43  |
| 41.7  | 7.23E-52  |
| 48.7  | 4.90E-60  |
| 55.6  | 3.32E-68  |
| 62.6  | 2.25E-76  |
| 69.5  | 1.52E-84  |
| 76.5  | 1.03E-92  |
| 83.4  | 6.98E-101 |
| 90.4  | 4.72E-109 |
| 97.3  | 3.20E-117 |
| 104.3 | 2.17E-125 |
| 111.2 | 1.47E-133 |
| 118.2 | 9.94E-142 |
| 125.1 | 6.73E-150 |
| 132.1 | 4.56E-158 |
| 139.0 | 3.09E-166 |
|       |           |

Remedial targets workshear v3.1

Nachthalene (E.OS) RTIN v3.2 x/3 caveg Groundwater

Nachthalene (E.OS) RTIN v3.2 x/3 caveg Groundwater



# Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

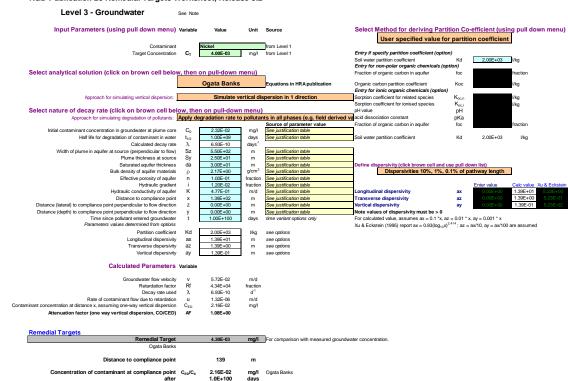
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

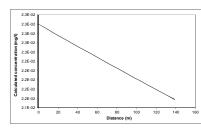
| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | I    |                            |     |   |
| Completed by                           | Gabriella Barnes |      |                            |     |   |
| Completed by:<br>Date:                 | 02-Dec-19        |      | Version:                   |     | 1 |
| Date.                                  | 02 DCC 13        |      | version.                   |     | • |
| Contaminant                            | Nickel           |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.004            | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.







Note graph assumes plume disperses vertically in one direction only. An alternative solution race graph assumes prume unperses venically in one direction only. At alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

### Note

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

### Calculated concentrations for distance-concentration graph

| Ogata Bank  |             |
|-------------|-------------|
| From calcul | ation sheet |
| Distance    | Concent     |
|             | _           |
|             | n           |
| 0           | 2.3         |

| tarice | Concentration |
|--------|---------------|
|        | mg/l          |
| 0      | 2.3E-02       |
| 7.0    | 2.31E-02      |
| 13.9   | 2.30E-02      |
| 20.9   | 2.29E-02      |
| 27.8   | 2.29E-02      |
| 34.8   | 2.28E-02      |
| 41.7   | 2.27E-02      |
| 48.7   | 2.26E-02      |
| 55.6   | 2.25E-02      |
| 62.6   | 2.25E-02      |
| 69.5   | 2.24E-02      |
| 76.5   | 2.23E-02      |
| 83.4   | 2.22E-02      |
| 90.4   | 2.21E-02      |
| 97.3   | 2.21E-02      |
| 104.3  | 2.20E-02      |
| 111.2  | 2.19E-02      |
| 118.2  | 2.18E-02      |
| 125.1  | 2.17E-02      |
| 132.1  | 2.17E-02      |
| 139.0  | 2.16E-02      |
|        |               |

Remedial targets worksheet v3.1 03/12/2019, 08:02 Nickel (EQS) RTM v3.2.xlsLevel3 Groundwater



# Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

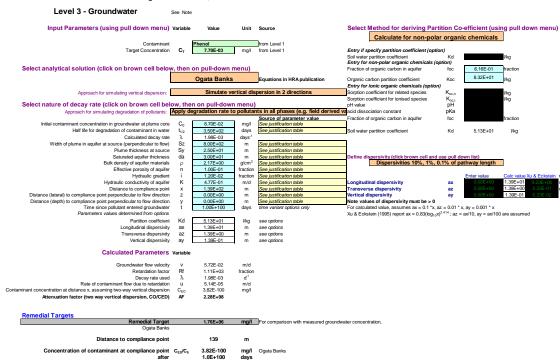
The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

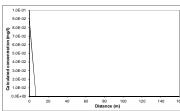
| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Toll Link | Road |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Phenol           |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.0077           | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).


Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.

Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).



Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.





Note graph assumes plume disperses vertically in one solution assuming the centre of the plume is located at presented in the calculation sheets.

| Note                                                                                                                                                                                                                |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| This sheet calculates the Level 3 remedial target for groundwater, base to the receptor or compliance located down hydraulic gradient of the so solution methods are included, the preferred option is Ogata Banks. |                   |
| By setting a long travel time it will give the steady state solution, which s                                                                                                                                       | should be used to |

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used



calculate remedial targets.

alculated concentrations for stance-concentration graph

|           |             |          |        |                           | concentrations<br>oncentration gr |
|-----------|-------------|----------|--------|---------------------------|-----------------------------------|
|           |             |          |        | Ogata Bank<br>From calcul |                                   |
|           |             |          |        | Distance                  | Concentration                     |
|           |             |          |        |                           | ma/l                              |
|           |             |          |        | 0                         | 8.7E-02                           |
|           |             |          |        | 7.0                       | 1.05E-06                          |
|           |             |          |        | 13.9                      | 1.28E-11                          |
|           |             |          |        | 20.9                      | 1.54E-16                          |
|           |             |          |        | 27.8                      | 1.87E-21                          |
|           |             |          |        | 34.8                      | 2.26E-26                          |
| 100       | 120         | 140      | 160    | 41.7                      | 2.74E-31                          |
| m)        | 120         | 140      | 100    | 48.7                      | 3.32E-36                          |
|           |             |          |        | 55.6                      | 4.01E-41                          |
|           |             |          |        | 62.6                      | 4.86E-46                          |
|           | on only. Ar |          |        | 69.5                      | 5.87E-51                          |
| t the mid | d-depth of  | the aqui | fer is | 76.5                      | 7.09E-56                          |
|           |             |          |        | 83.4                      | 8.56E-61                          |

| 0     | 8.7E-02   |
|-------|-----------|
| 7.0   | 1.05E-06  |
| 13.9  | 1.28E-11  |
| 20.9  | 1.54E-16  |
| 27.8  | 1.87E-21  |
| 34.8  | 2.26E-26  |
| 41.7  | 2.74E-31  |
| 48.7  | 3.32E-36  |
| 55.6  | 4.01E-41  |
| 62.6  | 4.86E-46  |
| 69.5  | 5.87E-51  |
| 76.5  | 7.09E-56  |
| 83.4  | 8.56E-61  |
| 90.4  | 1.03E-65  |
| 97.3  | 1.25E-70  |
| 104.3 | 1.50E-75  |
| 111.2 | 1.81E-80  |
| 118.2 | 2.18E-85  |
| 125.1 | 2.63E-90  |
| 132.1 | 3.17E-95  |
| 139.0 | 3.82E-100 |
|       |           |

Remedial targets worksheet v3.1 09/01/2020, 13:51 Phenol (EQS) RTM 090120 final round.xisLevel3 Groundwater



# Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

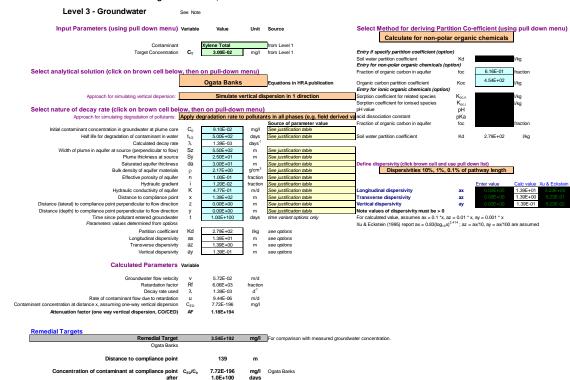
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

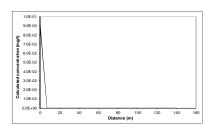
| Details to be completed for e                      | each assessment      |      |                            |     |   |
|----------------------------------------------------|----------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:                        | M54 M6 Link Road     | l    |                            |     |   |
| Completed by:                                      | Gabriella Barnes     |      |                            |     |   |
| Date:                                              | 02-Dec-19            |      | Version:                   |     | 1 |
| Contaminant Target Concentration (C <sub>T</sub> ) | Xylene Total<br>0.03 | mg/l | Origin of C <sub>⊤</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.







Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

### Note

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed: M54 M6 Link Road
Completed by: Gabriella Barnes
Date: 02/12/2019
Version: 1

Calculated concentrations for distance-concentration graph

### Ogata Banks From calculation sheet

| i i om carcara | don once      |
|----------------|---------------|
| Distance       | Concentration |
|                | mg/l          |
| 0              | 9.1E-02       |
| 7.0            | 1.80E-11      |
| 13.9           | 3.56E-21      |
| 20.9           | 7.05E-31      |
| 27.8           | 1.40E-40      |
| 34.8           | 2.76E-50      |
| 41.7           | 5.47E-60      |
| 48.7           | 1.08E-69      |
| 55.6           | 2.14E-79      |
| 62.6           | 4.24E-89      |
| 69.5           | 8.38E-99      |
| 76.5           | 1.66E-108     |
| 83.4           | 3.28E-118     |
| 90.4           | 6.50E-128     |
| 97.3           | 1.29E-137     |
| 104.3          | 2.54E-147     |
| 111.2          | 5.03E-157     |
| 118.2          | 9.96E-167     |
| 125.1          | 1.97E-176     |
| 132.1          | 3.90E-186     |
| 139.0          | 7.72E-196     |
|                |               |

Remedial targets worksheet v3.1

Xivene Total (EGS) RTM 02.4s Level 80 Groundwalet 
Xivene Total (EGS) RTM 0



# Remedial Targets Worksheet, Release 3.2

First released: 2006. Version 3.2: January 2013

This worksheet has been produced in combination with the document 'Remedial Targets Methodology: Hydrogeological risk assessment for land contamination (Environment Agency 2006).

Users of this worksheet should always refer to the User Manual to the Remedial Targets Methodology and to relevant guidance on UK legislation and policy, in order to understand how this procedure should be applied in an appropriate context.

© Environment Agency, 2006. (Produced by the Environment Agency's Science Group)

The calculation of equations in this worksheet has been independently checked by Entec (UK) Ltd on behalf of the Environment Agency. All rights reserved. You will not modify, reverse compile or otherwise dis-assemble the worksheet.

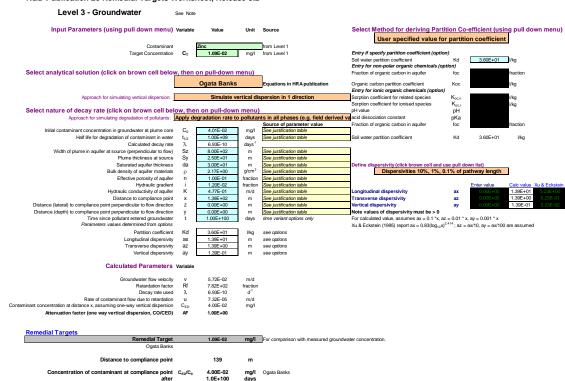
Liability: The Environment Agency does not promise that the worksheet will provide any particular facilities or functions. You must ensure that the worksheet meets your needs and you remain solely responsible for the competent use of the worksheet. You are entirely responsible for the consequences of any use of the worksheet and the Agency provides no warranty about the fitness for purpose or performance of any part of the worksheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the worksheet will be uninterrupted or error free. You should carry out all necessary virus checks prior to installing on your computing system.

IMPORTANT: To enable MS Excel worksheet, click Tools, Add -Ins, Analysis Tool Pak and Analysis Tool Pak-VBA (to calculate error functions)

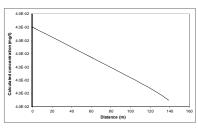
| Details to be completed for e          | each assessment  |      |                            |     |   |
|----------------------------------------|------------------|------|----------------------------|-----|---|
| Site Name:<br>Site Address:            | M54 M6 Link Road | i    |                            |     |   |
| Completed by:                          | Gabriella Barnes |      |                            |     |   |
| Date:                                  | 02-Dec-19        |      | Version:                   |     | 1 |
| Contaminant                            | Zinc             |      |                            |     |   |
| Target Concentration (C <sub>T</sub> ) | 0.0109           | mg/l | Origin of C <sub>T</sub> : | EQS |   |

This worksheet can be used to determine remedial targets for soils (Worksheets Level 1 Soil, Level 2 and Level 3 Soil) or to determine remedial targets for groundwater (Level 3 Groundwater). For Level 3, parameter values must be entered separately dependent on whether the assessment is for soil or groundwater. For soil, remedial targets are calculated as either mg/kg (for comparision with soil measurements) or mg/l (for comparison with leaching tests or pore water concentrations).

Site details entered on this page are automatically copied to Level 1, 2 and 3 Worksheets.


Worksheet options are identified by brown background and employ a pull-down menus. Data entry are identified as blue background.

Data origin / justification should be noted in cells coloured yellow and fully documented in subsequent reports.


Data carried forward from an earlier worksheet are identified by a light green background

It is recommended that a copy of the original worksheet is saved (all data fields in the original copy are blank).

Care should be used when calculating remedial targets using the time variant options as this may result in an overestimate of the remedial target. The recommended value for time when calculating the remedial target is 9.9E+99.







Note graph assumes plume disperses vertically in one direction only. An alternative solution assuming the centre of the plume is located at the mid-depth of the aquifer is presented in the calculation sheets.

### Note

This sheet calculates the Level 3 remedial target for groundwater, based on the distance to the receptor or compliance located down hydraulic gradient of the source Three solution methods are included, the preferred option is Ogata Banks.

By setting a long travel time it will give the steady state solution, which should be used to calculate remedial targets.

The measured groundwater concentration should be compared with the Level 3 remedial target to determine the need for further action.

Note if contaminant is not subject to first order degradation, then set half life as 9.0E+99.

This worksheet should be used if pollutant transport and degradation is best described by a first order reaction. If degradation is best described by an electron limited degradation such as oxidation by O2, NO3, SO4 etc than an alternative solution should be used

Site being assessed: M54 M6 Link Road
Completed by: Gabriella Barnes
Date: 02/12/2019
Version: 1

# Calculated concentrations for distance-concentration graph

| Ogata Bank  | (S            |
|-------------|---------------|
| From calcul | lation sheet  |
| Distance    | Concentration |

|       | mg/l     |
|-------|----------|
| 0     | 4.0E-02  |
| 7.0   | 4.01E-02 |
| 13.9  | 4.01E-02 |
| 20.9  | 4.01E-02 |
| 27.8  | 4.01E-02 |
| 34.8  | 4.01E-02 |
| 41.7  | 4.01E-02 |
| 48.7  | 4.01E-02 |
| 55.6  | 4.01E-02 |
| 62.6  | 4.01E-02 |
| 69.5  | 4.01E-02 |
| 76.5  | 4.01E-02 |
| 83.4  | 4.01E-02 |
| 90.4  | 4.01E-02 |
| 97.3  | 4.01E-02 |
| 104.3 | 4.01E-02 |
| 111.2 | 4.01E-02 |
| 118.2 | 4.01E-02 |
| 125.1 | 4.01E-02 |
| 132.1 | 4.00E-02 |
| 139.0 | 4.00E-02 |
|       |          |
|       |          |

Remedial targets worksheet v3.1
Znc (EQS) RTM 02.4 sizew8 (Groundwater



# **Appendix E. Gas Monitoring Results**

| Borehole | Date of      | Baro.    | Relative<br>Pressure | Depth of<br>Installation | Response                 | Install | Diameter | CH₄        | CO <sub>2</sub> | 02    | H <sub>2</sub> S | со    | Gas Flow<br>Rate | Water  | GSV CH4 | GSV CO2 |
|----------|--------------|----------|----------------------|--------------------------|--------------------------|---------|----------|------------|-----------------|-------|------------------|-------|------------------|--------|---------|---------|
| Number   | monitoring   | Pressure | Pressure             | Installation             | Zone                     | Ref     |          | peak       | peak            | Min   | peak             | peak  | peak             | Level  |         |         |
|          |              | mbar     | mbar                 | mbgl                     |                          |         | mm       | (% vol)    | (% vol)         | (% v) | (ppm)            | (ppm) | (l/h)            | (mbgl) |         |         |
|          | 11/07/2019   |          |                      | 4.5                      |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 21/07/2019   | 995      | 0                    | 4.5                      |                          | 1       | 50       | 10.7       | 1.6             | 10    | 0                | 80    | 0                | DRY    | 0       | 0       |
|          | 31/07/2019   | 1000     | 0                    | 4.5                      |                          | 1       | 50       | 28.7       | 3.8             | 5.3   | 0                | 63    | 0                | 4.25   | 0       | 0       |
|          | 06/08/2019   | 988      | 0                    | 4.5                      |                          | 1       | 50       | 84.7       | 4.6             | 0     | 0                | 10    | 0                | 4.42   | 0       | 0       |
|          | 20/08/2019   |          |                      | 4.5                      | Made                     |         | 50       | 58.7       | 5.9             | 0.3   | 2                | 2000  | 2.1              | 4.48   | 1.2327  | 0.1239  |
| BH03     | 29/08/2019   | 1000     | 0.02                 | 4.5                      | Ground                   | 1       | 50       | 68.5       | 12.3            | 0.3   | 5                | 118   | 0.1              | 4.4    | 0.0685  | 0.0123  |
|          | 06/09/2019   | 1003     | 0.17                 | 4.5                      | Ground                   | 1       | 50       | 75.3       | 17.7            | 0.7   | 6                | 24    | 0                | 4.46   | 0       | 0       |
|          | 1            |          |                      | 4.5                      |                          |         |          | 86.2       | 8.4             | 1.3   | 1                | 0     | 11.7             | 4.16   | 10.0854 | 0.9828  |
|          | 2            |          |                      | 4.5                      |                          |         |          | 0.9        | 0.1             | 21.3  | 0                | 0     | 0.1              | 0.62   | 0.0009  | 0.0001  |
|          | 3            |          |                      | 4.5                      |                          |         |          | 1.2        | 0.1             | 17.8  | 0                | 8     | 0.2              | 0.66   | 0.0024  | 0.0002  |
|          | Max (Min O2) |          |                      |                          |                          |         |          | 86.2       | 17.7            | 0     | 6                | 2000  | 11.7             | 4.48   | 10.0854 | 2.0709  |
|          |              |          |                      |                          |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 11/07/2019   |          |                      | 12.5                     |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 21/07/2019   |          |                      | 12.5                     |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 31/07/2019   | 995      | 0                    | 12.5                     |                          | 1       | 50       | 0          | 0               | 20.6  | 0                | 0     | 0                | 5.48   | 0       | 0       |
|          | 06/08/2019   | 984      | 0                    | 12.5                     |                          | 1       | 50       | 0          | 1.2             | 18.8  | 0                | 0     | 0                | 5.42   | 0       | 0       |
|          | 20/08/2019   | 1008     | 0.14                 | 12.5                     | Mastharad                | 1       | 50       | 0          | 0.1             | 21.2  | 0                | 1     | 0.2              | 5.45   | 0       | 0.0002  |
| BH04     | 29/08/2019   | 1001     | 0.07                 | 12.5                     | Weathered -<br>Bedrock - | 1       | 50       | 0          | 6.2             | 13.6  | 0                | 4     | 0.2              | 5.42   | 0       | 0.0124  |
|          | 06/09/2019   | 1002     | 0.1                  | 12.5                     |                          | 1       | 50       | 0          | 0.7             | 12.9  | 0                | 0     | 0.1              | 5.48   | 0       | 0.0007  |
|          | 1            |          |                      | 12.5                     |                          |         |          | 0          | 0.1             | 21.2  | 0                | 0     | 0                | 5.22   | 0       | 0       |
|          | 2            |          |                      | 12.5                     |                          |         |          | 0          | 8.9             | 9.6   | 0                | 1     | 0.2              | 5.1    | 0       | 0.0178  |
|          | 3            |          |                      | 12.5                     |                          |         |          | 0.1        | 8.5             | 16.7  | 0                | 1     | 0.2              | 5.04   | 0.0002  | 0.017   |
|          | Max (Min O2) |          |                      |                          |                          |         |          | 0.1        | 8.9             | 9.6   | 0                | 4     | 0.2              | 5.48   | 0.0144  | 1.2816  |
|          |              |          |                      |                          |                          |         |          |            |                 |       |                  |       |                  |        | •       |         |
|          | 11/07/2019   |          |                      | 12                       |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 21/07/2019   |          |                      | 12                       |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 31/07/2019   | 995      | 0                    | 12                       |                          | 1       | 50       | 0          | 0               | 20.4  | 0                | 0     | 5.1              | 3.79   | 0       | 0       |
|          | 06/08/2019   | 984      | 0                    | 12                       |                          | 1       | 50       | 0          | 0               | 20.3  | 0                | 0     | 0                | 5.42   | 0       | 0       |
|          | 20/08/2019   | 1008     | 0.16                 | 12                       | Weathered                | 1       | 50       | 0          | 0.1             | 20.9  | 0                | 0     | 0.4              | 3.73   | 0       | 0.0004  |
| BH05     | 29/08/2019   | 1001     | 0.03                 | 12                       | Bedrock                  | 1       | 50       | 0          | 0.1             | 20.6  | 0                | 4     | 0.2              | 3.7    | 0       | 0.0002  |
|          | 06/09/2019   | 1002     | 0.1                  | 12                       | Bedrock                  | 1       | 50       | 0          | 0.1             | 20.5  | 0                | 1     | 0.1              | 3.72   | 0       | 0.0001  |
|          | 1            |          |                      | 12                       |                          |         |          | 0          | 1               | 19.7  | 0                | 1     | -2               | 3.48   | 0       | -0.02   |
|          | 2            |          |                      | 12                       |                          |         |          | 0.1        | 1.8             | 20.3  | 0                | 1     | -0.5             | 3.41   | -0.0005 | -0.009  |
|          | 3            |          |                      | 12                       |                          |         |          | 0.1        | 0.4             | 21.7  | 0                | 1     | 0.3              | 3.27   | 0.0003  | 0.0012  |
|          | Max (Min O2) |          |                      |                          |                          |         |          | 0.1        | 1.8             | 19.7  | 0                | 4     | 5.1              | 5.42   | 0.0051  | 0.0918  |
|          |              |          |                      |                          |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 11/07/2019   |          |                      | 21                       |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 21/07/2019   |          |                      | 21                       |                          |         |          |            |                 |       |                  |       |                  |        |         |         |
|          | 31/07/2019   | 995      | 0                    | 21                       |                          | 1       | 50       | 0          | 0.4             | 18.3  | 0                | 12    | 5.7              | 3.52   | 0       | 0.0228  |
|          | 06/08/2019   | 985      | 0                    | 21                       |                          | 1       | 50       | 0          | 0.5             | 17.5  | 0                | 10    | 6.2              | 3.47   | 0       | 0.031   |
|          | 20/08/2019   | 1008     | 0.09                 | 21                       | Coorfini-1               | 1       | 50       | 0.1        | 0.9             | 16.6  | 0                | 20    | 0.1              | 8.4    | 0.0001  | 0.0009  |
| вн06     | 29/08/2019   | 1001     | 0.02                 | 21                       | Superficial              | 1       | 50       | 0.1        | 1               | 16.6  | 0                | 31    | 2.8              | 3.47   | 0.0028  | 0.028   |
|          | 06/09/2019   | 1002     | 0.16                 | 21                       | Deposits                 | 1       | 50       | 0.1        | 0.8             | 18.4  | 0                | 27    | 0                | 3.31   | 0       | 0       |
|          | 1            |          |                      | 21                       |                          |         |          | 0          | 3.4             | 12.1  | 2                | 99    | 1                | 3.22   | 0       | 0.034   |
|          | 2            |          |                      | 21                       |                          |         |          | Gas Monito |                 |       |                  |       |                  | 3.13   |         |         |
|          | 3            |          |                      | 21                       |                          |         |          | Gas Monito |                 |       |                  |       |                  | 3.06   |         |         |
|          | Max (Min O2) |          |                      |                          |                          |         |          | 0.1        | 3.4             | 12.1  | 2                | 99    | 6.2              | 8.4    | 0.0062  | 0       |

60536736

|        | 44/07/0040        |      |            |      |               | ı | ı  | I I        |     |      | 1  |     |      | 1    |         | I       |
|--------|-------------------|------|------------|------|---------------|---|----|------------|-----|------|----|-----|------|------|---------|---------|
| L      | 11/07/2019        |      |            | 15.5 |               |   |    |            |     |      |    |     |      |      |         |         |
| L      | 21/07/2019        |      |            | 15.5 |               |   |    |            |     |      |    |     |      |      |         |         |
| L      | 31/07/2019        | 996  | 0          | 15.5 |               | 1 | 50 |            | 0.2 | 13.6 | 0  |     | 0    |      | 0       |         |
|        | 06/08/2019        | 985  | 0          | 15.5 |               | 1 | 50 | 0          | 0.2 | 12.5 | 0  | 53  | 0    | 6.44 | 0       | C       |
|        | 20/08/2019        | 1008 | 0.05       | 15.5 | Superficial   | 1 | 50 | 0.2        | 0.1 | 14.8 | 0  | 59  | 0.4  | 6.4  | 0.0008  | 0.0004  |
| BH07   | 29/08/2019        | 1001 | 0.02       | 15.5 | Superficial - | 1 | 50 | 0.2        | 0.1 | 13.5 | 0  | 78  | 0.1  | 6.4  | 0.0002  | 0.0001  |
|        | 06/09/2019        | 1002 | 0.12       | 15.5 | Deposits      | 1 | 50 | 0          | 0   | 20.2 | 0  | 2   | 0.1  | 6.46 | 0       | С       |
| ľ      | 1                 |      |            | 15.5 |               |   |    | 0.9        | 0.1 | 12.4 | 0  | 5   | 0.1  | 5.15 | 0.0009  | 0.0001  |
| ľ      | 2                 |      |            | 15.5 |               |   |    | 0.2        | 0.1 | 20.6 | 0  | 1   | 0.1  | 5.08 | 0.0002  | 0.0001  |
| Ī      | 3                 |      |            | 15.5 |               |   |    | 0.1        | 0.1 | 21.4 | 0  | 1   | 0.3  | 5.03 | 0.0003  | 0.0003  |
| ľ      | Max (Min O2)      |      |            |      |               |   |    | 0.9        | 0.2 | 12.4 | 0  | 78  | 0.4  | 6.46 | 0.0036  | 0.0008  |
|        |                   |      |            |      |               |   |    |            |     |      |    |     |      |      |         |         |
|        | 11/07/2019        | 1005 | 0.02       | 28.2 |               | 1 | 50 | 0.2        | 0.3 | 19.8 | 0  | 4   | 0.2  | 3.55 | 0.0004  | 0.0006  |
| ŀ      | 21/07/2019        | 993  | 0          | 28.2 |               | 1 | 50 |            | 0.3 | 20.4 | 25 |     |      |      | 0       | 0.0054  |
| ŀ      | 31/07/2019        | 993  | 0          | 28.2 |               | 1 | 50 |            | 0.4 | 20   | 0  |     | 3.5  | 3.64 | 0       | 0.014   |
| ŀ      | 06/08/2019        | 987  | 0          | 28.2 |               | 1 | 50 |            | 0.5 | 19.8 | 0  |     | 2.5  | 3.65 | 0       | 0.0125  |
| ŀ      | 20/08/2019        | 1005 | 0.03       | 28.2 |               | 1 | 50 |            | 0.6 | 19.7 | 1  |     |      | 3.6  | 0.0027  | 0.0162  |
| BH08a  | 29/08/2019        | 1000 | 0.28       | 28.2 | Bedrock       | 1 | 50 |            | 0.7 | 18.8 | 1  | 0   |      | 3.79 | 0.0027  | 0.0112  |
| 51,000 | 06/09/2019        | 1003 | 0.05       | 28.2 |               | 1 | 50 |            | 0.8 | 18.9 | 0  |     |      | 3.65 | 0.0009  | 0.0024  |
| ŀ      | 1                 | 1003 | 0.00       | 28.2 |               | - |    | 0.3        | 2.1 | 18.9 | 0  |     |      | 3.03 | 0.0009  | 0.0024  |
| F      | 2                 |      |            | 28.2 |               |   |    | Gas Monite |     |      | ·  | -   | 0.1  | 2.06 |         | 0.0021  |
| ŀ      | 3                 |      |            | 28.2 |               |   |    | Gas Monite |     |      |    |     |      | 3.01 |         |         |
| ŀ      | Max (Min O2)      |      |            | 20.2 |               |   |    | 0.3        | 2.1 | 18.8 | 25 | 240 | 3.5  |      | 0.0105  | 0.0735  |
|        | IVIAX (IVIIII OZ) |      |            |      |               |   |    | 0.5        | 2.1 | 10.0 | 23 | 240 | 3.5  |      | 0.0103  | 0.0755  |
|        | 11/07/2019        | 994  | 0.1        | 27   |               | 1 | 50 | 4.4        | 2.1 | 11.5 | 1  | 66  | 0.1  | 9.28 | 0.0044  | 0.0021  |
| ŀ      | 21/07/2019        | 994  | 0.1        | 27   |               | 1 | 50 |            | 0.3 | 11.5 | 0  |     | 0.1  | 9.25 | 0.0044  | 0.0021  |
| ŀ      | 31/07/2019        | 993  | 0          | 27   |               | 1 | 50 |            | 0.1 | 16.6 | 0  |     |      | 9.25 | 0.0096  | 0.0012  |
| H      | 06/08/2019        | 987  | 0          | 27   |               | 1 | 50 |            | 0.1 | 13.7 | 0  |     | 1.3  | 9.23 | 0.0096  | 0.0052  |
| F      | 20/08/2019        | 1005 | 0.03       | 27   |               | 1 | 50 |            | 0.4 | 17.2 | 1  |     | 2.8  | 9.21 | 0.0308  | 0.0032  |
| вно9   | 29/08/2019        | 1003 | 0.03       | 27   | Weathered     |   | 50 |            | 0.8 | 17.2 | 2  |     | 3    |      | 0.0308  | 0.0084  |
| вноэ   |                   |      |            | 27   | Bedrock       | 1 |    |            |     |      |    |     |      |      |         |         |
| }      | 06/09/2019        | 1003 | 5.27       |      |               | 1 | 50 |            | 1.1 | 13.4 | 1  |     | 0.8  | 8.21 | 0.0272  | 0.0088  |
| }      | 1                 |      |            | 27   |               |   |    | 7.1        | 0.1 | 10.3 | 5  |     | 14.4 | 8.91 | 1.0224  | 0.0144  |
| }      | 2                 |      |            | 27   |               |   |    | 2.2        | 0.2 | 18.8 | 0  |     |      | 8.85 | 0.0044  | 0.0004  |
| }      | 3                 |      |            | 27   |               |   |    | 2.8        | 0.1 | 19.7 | 0  |     |      | 8.83 | 0.0056  | 0.0002  |
|        | Max (Min O2)      |      |            |      |               |   |    | 7.1        | 2.1 | 10.3 | 5  | 446 | 14.4 |      | 1.0224  | 0.3024  |
| 1      | 44/07/06:-        | 00.4 | 0.4        | 40.5 |               |   |    |            |     | 45.5 | _  |     |      | F 60 |         |         |
| }      | 11/07/2019        | 994  | 0.4        | 13.5 |               | 1 | 50 |            | 0.1 | 19.9 | 0  |     |      |      | 0       | C       |
|        | 21/07/2019        | 995  | 0          | 13.5 |               | 1 | 50 |            | 0.1 | 20.7 | 0  |     |      |      | 0       | 0       |
|        | 31/07/2019        | 995  | 0          | 13.5 |               | 1 | 50 |            | 0   | 20.3 | 0  |     |      |      | 0       | C       |
| Ļ      | 06/08/2019        | 988  | 0          | 13.5 |               | 1 | 50 |            | 0.2 | 20.5 | 0  |     |      |      | 0       | 0.0004  |
|        | 20/08/2019        | 1005 | 0          | 13.5 | Superficial   | 1 | 50 |            | 0.1 | 19.5 | 0  |     |      | 8.69 | 0.0001  | 0.0001  |
| BH10   | 29/08/2019        | 1000 | 0.05       | 13.5 | deposits      | 1 | 50 |            | 0.2 | 18.5 | 1  |     |      | 5.67 | 0       | 0.0004  |
| Ļ      | 06/09/2019        | 1003 | 0.02       | 13.5 | ,             | 1 | 50 |            | 0.1 | 20.6 | 0  |     |      | 7.7  | 0       | 0.0001  |
| Ļ      | 1                 |      |            | 13.5 |               |   |    | 0          | 2.5 | 17.3 | 0  |     |      | 5.16 | 0       | 0.015   |
|        | 2                 |      |            | 13.5 |               |   |    | 0.1        | 2.8 | 19   | 0  |     |      | 5.01 | -0.0011 | -0.0308 |
|        |                   |      | ı <b>I</b> | 40.5 | ļ             | 1 |    |            | 2.4 | 19.2 | 0  | lο  | -3.1 | 4.89 | 0       | -0.0651 |
| [      | 3<br>Max (Min O2) |      |            | 13.5 |               |   |    | 0          | 2.1 | 17.3 | U  | 18  |      |      | 0.0006  | 0.0168  |

|      | 11/07/2019        | 995  | 0.03  | 14     |                      | 1                                                | 50 | 0.1           | 0.1 | 20.6       | 0           | 1   | 0.3 | 4.59 | 0.0003 | 0.0003 | •                           |
|------|-------------------|------|-------|--------|----------------------|--------------------------------------------------|----|---------------|-----|------------|-------------|-----|-----|------|--------|--------|-----------------------------|
|      | 21/07/2019        | 995  | 0.00  |        | Weathered<br>Bedrock | 1                                                | 50 | 0.12          | 0.1 | 20.9       | 0           |     | 0.0 | 4.6  | 0.0000 |        |                             |
|      | 31/07/2019        | 993  | 0     |        |                      | 1                                                | 50 | 0             | 0.2 | 20.4       | 0           |     | 0   | 4.33 | 0      |        |                             |
|      | 06/08/2019        | 988  | 3     | 14     |                      | 1                                                | 50 | 0             | 0.2 | 20.4       | 0           |     | 0   | 4.88 | 0      |        |                             |
|      | 20/08/2019        | 1005 | 0.002 | 14     |                      | 1                                                | 50 | 0.1           | 0.1 | 20.2       | 0           |     | 0.1 | 4.92 | 0.0001 | 0.0001 |                             |
|      | 29/08/2019        | 1003 | 0.002 | 14     |                      | 1                                                | 50 |               | 0.1 | 19.6       | 0           | -   | 0.1 | 4.92 | 0.0001 |        |                             |
| BH11 | 06/09/2019        | 1001 | 0.02  | 14     |                      | 1                                                | 50 | 0             | 0.1 | 20.8       | 0           |     | 0.2 | 4.87 | 0      | 0.0002 |                             |
|      | 06/09/2019        | 1004 | 0.03  | 14     |                      |                                                  | 30 | 0             | 1.4 | 20.8       | 0           |     | 0.2 | 4.9  | 0      | 0.0028 |                             |
|      | 2                 |      |       | 14     |                      |                                                  |    |               |     | Mr Shacklo |             |     | 0.2 |      | U      | 0.0028 |                             |
|      | 3                 |      |       | 14     |                      |                                                  |    | 0.1           | 0.6 | 21.3       | OCK TEVOKED |     | 0.2 |      | 0.0002 | 0.0012 |                             |
|      | 4                 |      |       | 14     |                      |                                                  |    | 0.1           | 0.6 | 21.3       | 0           |     | 0.2 | 4.13 | 0.0002 | 0.0012 |                             |
|      | Max (Min O2)      |      |       |        |                      |                                                  |    | 0.3           | 1.4 | 19.6       | 0           |     | 0.3 | 4.13 | 0.0009 |        |                             |
|      | IVIAX (IVIIII O2) |      |       |        |                      |                                                  |    | 0.3           | 1.4 | 19.6       | U           | 12  | 0.3 |      | 0.0009 | 0.0042 |                             |
|      | 11/07/2010        |      |       | -      |                      | I I                                              |    |               |     |            |             |     |     | 1    |        |        | İ                           |
|      | 11/07/2019        |      |       | 5<br>5 |                      | <del>                                     </del> |    |               |     |            |             |     |     |      |        |        |                             |
|      | 21/07/2019        |      |       |        |                      | <del>                                     </del> |    |               |     |            |             |     |     | -    |        |        |                             |
|      | 31/07/2019        | 202  |       | 5      |                      | <del>                                     </del> |    |               |     | 20.0       |             | 4.1 |     | 1 10 |        |        |                             |
|      | 06/08/2019        | 987  | 0     |        |                      | 1                                                | 50 | 0             | 0   | 20.2       | 0           |     | 0   | 1.19 | 0      |        |                             |
|      | 20/08/2019        | 1006 | 0.05  | 5      | C                    | 1                                                | 50 | 0.1           | 0.1 | 20.9       | 0           |     | 0.1 | 0.27 | 0.0001 | 0.0001 |                             |
| BH12 | 29/08/2019        | 1001 | 0.05  | 5      | Superficial          | 1                                                | 50 | 0             | 0   | 19.9       | 1           |     | 0.2 | 1.26 | 0      | 0      |                             |
|      | 06/09/2019        | 1004 | 0.07  | 5      | Deposits             | 1                                                | 50 | 0             | 0.1 | 20.9       | 0           |     | 0   | 1.4  | 0      |        |                             |
|      | 1                 |      |       | 5      |                      |                                                  |    | 0             | 0.1 | 21.3       | 0           |     |     | 0.62 | 0      | 0      |                             |
|      | 2                 |      |       | 5      |                      |                                                  |    | $\overline{}$ |     | Mr Shackle |             |     |     |      |        |        |                             |
|      | 3                 |      |       | 5      |                      |                                                  |    | 0.1           | 0.2 | 21.5       | 0           |     | 0.2 | 0.62 | 0.0002 | 0.0004 |                             |
|      | 4                 |      |       | 5      |                      |                                                  |    | 0.2           | 0.1 | 21         | 0           |     |     |      | 0      | 0      |                             |
|      | Max (Min O2)      |      |       |        |                      |                                                  |    | 0.2           | 0.2 | 19.9       | 1           | 41  | 0.2 |      | 0.0004 | 0.0004 |                             |
|      |                   |      |       |        |                      |                                                  |    |               |     |            |             |     |     |      |        |        | 1                           |
|      | 11/07/2019        |      |       | 12     | Superficial          |                                                  |    |               |     |            |             |     |     |      |        |        |                             |
|      | 21/07/2019        |      |       | 12     |                      |                                                  |    |               |     |            |             |     |     |      |        |        |                             |
|      | 31/07/2019        |      |       | 12     |                      |                                                  |    |               |     |            |             |     |     |      |        |        |                             |
|      | 06/08/2019        |      |       | 12     |                      |                                                  |    |               |     |            |             |     |     |      |        |        |                             |
|      | 20/08/2019        | 1008 | 0.1   | 12     |                      | 1                                                | 50 | 0.1           | 0   | 20.4       | 0           |     | 0.5 | 8.68 | 0.0005 | 0      | Water sample taken at 11.10 |
| BH16 | 29/08/2019        | 1000 | 0.03  | 12     | Deposits             | 1                                                | 50 | 0.1           | 0   | 20.5       | 0           |     | 0.1 | 7.7  | 0.0001 | 0      |                             |
|      | 06/09/2019        | 996  | 0.03  | 12     |                      | 1                                                | 50 | 0.1           | 0   | 20.8       | 0           |     | 0.1 | 7.77 | 0.0001 | 0      |                             |
|      | 1                 |      |       | 12     |                      |                                                  |    | 0             | 0.1 | 21         | 0           |     | 0.2 | 6.99 | 0      | 0.0002 |                             |
|      | 2                 |      |       | 12     |                      |                                                  |    | 0.1           | 0.1 | 21.4       | 0           |     | 0.1 | 6.92 | 0.0001 | 0.0001 |                             |
|      | 3                 |      |       | 12     |                      |                                                  |    | 0.1           | 0.1 | 21.4       | 0           |     | 0.1 | 6.77 | 0.0001 | 0.0001 |                             |
|      | Max (Min O2)      |      |       |        |                      |                                                  |    | 0.1           | 0.1 | 20.4       | 0           | 262 | 0.5 |      | 0.0005 | 0.0005 |                             |
|      |                   |      |       |        |                      |                                                  |    |               |     |            |             |     |     |      |        |        | 1                           |
|      | 11/07/2019        |      |       | 12     |                      |                                                  |    |               |     |            |             |     |     |      |        |        |                             |
| BH18 | 21/07/2019        | 993  | 0     |        |                      | 1                                                | 50 | 0             | 0   | 15.7       | 0           |     | 0   | 3.48 | 0      |        |                             |
|      | 31/07/2019        | 996  | 0     |        |                      | 1                                                | 50 | 0             | 0   |            | 0           |     | 0   | 3.50 | 0      |        |                             |
|      | 06/08/2019        | 987  | 0     |        |                      | 1                                                | 50 | 0             | 0   | 14.2       | 0           |     | 0   | 3.53 | 0      | 0      |                             |
|      | 20/08/2019        | 1006 | 0.03  | 12     | Weathered<br>Bedrock | 1                                                | 50 |               | 0   | 21         | 0           |     | 0.1 | 3.5  | 0.0001 | 0      |                             |
|      | 29/08/2019        | 1000 | 0.33  | 12     |                      | 1                                                | 50 | 0             | 0.1 | 16.7       | 0           |     | 0.1 | 3.5  | 0      |        |                             |
|      | 06/09/2019        | 996  | 0.09  | 12     |                      | 1                                                | 50 | 0             | 0.2 | 18         | 0           |     | 0   | 3.55 | 0      | 0      |                             |
|      | 1                 |      |       | 12     |                      |                                                  |    | 0.6           | 1   | 19.6       | 0           |     | 0   | 2.24 | 0      | 0      |                             |
|      | 2                 |      |       | 12     |                      |                                                  |    | 0.1           | 1.6 | 19.3       | 0           |     | 0.2 | 1.96 | 0.0002 | 0.0032 |                             |
|      | 3                 |      |       | 12     |                      |                                                  |    | 0.2           | 1.6 | 19.3       | 0           | 1   | 3.3 | 1.55 | 0.0066 | 0.0528 |                             |
|      | Max (Min O2)      |      |       |        |                      |                                                  |    | 0.6           | 1.6 | 14.2       | 0           | 278 | 3.3 |      | 0.0198 | 0.0528 |                             |

|       | 11/07/2019               | ı    | I    | 15       |                      |                                                                                    | 1        |            |              |              |              |     | 1    |       |         |         | 1                                        |
|-------|--------------------------|------|------|----------|----------------------|------------------------------------------------------------------------------------|----------|------------|--------------|--------------|--------------|-----|------|-------|---------|---------|------------------------------------------|
|       | 21/07/2019               | 993  | 0    | 15       |                      | 1                                                                                  | 50       | 0          | 0            | 18           | 0            | 59  | 0    | 12.8  | 0       | 0       |                                          |
|       | 31/07/2019               | 995  | ٥    | 15       | Weathered            | 1                                                                                  | 50       | 0          | 0            |              | 0            | 0   |      |       | 0       | 0       |                                          |
|       | 06/08/2019               | 988  | 0    | 15       |                      | 1                                                                                  | 50       | 0          | 0            |              | 0            | 0   |      |       | 0       | 0       |                                          |
|       | 20/08/2019               | 1006 | 0.07 | 15       |                      | 1                                                                                  |          | 0.1        | 0            |              | 0            | 1   |      | 12.87 | 0.0001  | 0       |                                          |
| BH20  | 29/08/2019               | 1001 | 0.09 | 15       |                      | 1                                                                                  |          | 0.1        | 0            |              | 0            | 19  |      | 12.23 | 0.0001  | 0       |                                          |
|       | 06/09/2019               | 996  | 0.09 | 15       | Bedrock              | 1                                                                                  | 50       | 0          | 0.1          | 21           | 0            | 0   |      | 12.46 | 0       | 0.0001  |                                          |
|       | 1                        | 330  | 0.03 | 15       |                      |                                                                                    | - 50     | 0          | 2.2          | 19.2         | 0            | 0   |      | 2.24  | 0       | 0.0001  |                                          |
|       | 2                        |      |      | 15       |                      |                                                                                    |          | 0.1        | 3.1          | 18.9         | 0            | 0   |      | 1.96  | 0.0002  | 0.0062  |                                          |
|       | 3                        |      |      | 15       |                      |                                                                                    |          | 0.1        | 2.9          |              | 0            | 1   |      | 1.55  | 0.0033  | 0.0957  |                                          |
|       | Max (Min O2)             |      |      |          |                      |                                                                                    |          | 0.1        | 3.1          | 18           | 0            | 59  |      |       | 0.0033  | 0.1023  |                                          |
|       | , , ,                    |      |      |          |                      | -                                                                                  |          |            |              |              | -            |     |      |       |         |         |                                          |
|       | 11/07/2019               |      |      | 5        |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 21/07/2019               |      |      | 5        |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 31/07/2019               |      |      | 5        |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 06/08/2019               |      |      | 5        |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 20/08/2019               | 1008 | 0.02 | 5        | Superficial          | 1                                                                                  | 50       | 0.1        | 0            | 18.7         | 1            | 125 | 1.6  | 1.83  | 0.0016  | 0       | Water sample taken at 4.40m              |
| BH21  | 29/08/2019               | 1001 | 0    | 5        | Deposits             | 1                                                                                  | 50       | 0          | 0            | 18           | 1            | 366 | 0    | 1.99  | 0       | 0       |                                          |
|       | 06/09/2019               | 996  | 0.05 | 5        | Deposits             | 1                                                                                  | 50       | 0.1        | 0            | 17.9         | 1            | 147 |      | 1.98  | 0.0005  | 0       |                                          |
|       | 1                        |      |      | 5        |                      |                                                                                    |          | 0.6        | 1.3          | 15.9         |              | 4   | -2.8 | 1.15  | -0.0168 | -0.0364 |                                          |
|       | 2                        |      |      | 5        |                      |                                                                                    |          | 3.3        | 0.1          | 16.8         | 0            | 7   | 20.4 | 1.03  | 0.6732  | 0.0204  |                                          |
|       | 3                        |      |      | 5        |                      |                                                                                    |          | 0.1        | 0.1          | 20           | 0            | 2   | 0.2  | 1.35  | 0.0002  | 0.0002  |                                          |
|       | Max (Min O2)             |      |      |          |                      |                                                                                    |          | 3.3        | 1.3          | 15.9         | 1            | 366 | 20.4 | 1.99  | 0.6732  | 0.2652  |                                          |
|       |                          |      |      |          |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         | !                                        |
|       | 11/07/2019               |      |      | 29       |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 21/07/2019               |      |      | 29       |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 31/07/2019               |      |      | 29       |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 06/08/2019               |      |      | 29       |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
| BH22A | 20/08/2019<br>29/08/2019 |      |      | 29       | Dada-di              | 1                                                                                  |          |            |              |              |              |     |      | 0     |         |         | Low flow of water from top of standpipe. |
| BHZZA |                          |      |      | 29       | Bedrock              | 1                                                                                  | 50<br>50 |            |              |              |              |     |      | 0     |         |         |                                          |
|       | 06/09/2019               |      |      | 29<br>29 |                      | 1                                                                                  |          | Artosian M | latar ca car | ıldalt da as | c a palvoio  |     |      | 0     |         |         |                                          |
|       | 2                        |      |      | 29       |                      | Artesian Water so couldn't do gas analy:  Artesian Water so couldn't do gas analy: |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 3                        |      |      | 29       |                      |                                                                                    |          | Artesian W |              |              |              |     |      |       |         |         |                                          |
|       | Max (Min O2)             |      |      | 29       |                      |                                                                                    |          | Artesian w | ater so cot  | liun t do ga | S affalysis. |     |      |       |         |         |                                          |
|       | IVIAX (IVIIII OZ)        |      |      |          |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 11/07/2019               |      |      | 8        |                      |                                                                                    |          |            |              |              |              |     |      |       |         |         |                                          |
|       | 21/07/2019               | 1001 | 0    | 8        |                      | 1                                                                                  | 50       | 0          | 1.8          | 7            | 0            | 114 | 0    | 4.05  | 0       | 0       |                                          |
|       | 31/07/2019               | 1003 | 0    | 8        |                      | 1                                                                                  |          | 0          | 4.2          | 6.5          | 0            | 10  |      |       | 0       |         |                                          |
|       | 06/08/2019               | 990  | 0    | 8        |                      | 1                                                                                  |          | 0          | 5.5          | 5.1          | 0            | 0   | 0    |       | 0       | 0       |                                          |
|       | 20/08/2019               | 1008 | 0.05 | 8        | C                    | 1                                                                                  |          | 0.1        | 7.4          |              | 0            | 3   |      |       | 0       |         |                                          |
| BH24  | 29/08/2019               | 1001 | 0.09 | 8        | Superficial Deposits | 1                                                                                  |          | 0.1        | 7.8          |              | 0            | 3   |      |       | 0       |         |                                          |
|       | 06/09/2019               | 997  | 0.09 | 8        |                      | 1                                                                                  | 50       | 0.1        | 7            |              | 0            | 1   |      | -     | 0       | 0       |                                          |
|       | 1                        |      |      | 8        |                      |                                                                                    |          | 0          | 8.1          | 6.8          | 0            | 9   |      | 3.28  | 0       | 0.3078  |                                          |
|       | 2                        |      |      | 8        |                      |                                                                                    |          | 0          | 0.6          | 21.2         | 0            | 0   | 0.2  | 3.11  | 0       | 0.0012  |                                          |
|       | 3                        |      |      | 8        |                      |                                                                                    |          | 0.1        | 1            | 21.2         | 0            | 1   | 0.2  | 3.01  | 0.0002  | 0.002   |                                          |
|       | Max (Min O2)             |      |      |          |                      |                                                                                    |          | 0.1        | 8.1          | 3.9          | 0            | 114 |      |       | 0.0038  | 0.3078  |                                          |
| -     |                          |      |      |          |                      | •                                                                                  |          |            |              | •            |              |     |      |       |         |         |                                          |

| 11/07/2019   1002   0   17     1   50   0.1   0   19.1   1   197   0.3   7.41   0.003   0   17     1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |      |      |    |               |   |    |     |     |      |    |     |      |       |        |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|------|------|----|---------------|---|----|-----|-----|------|----|-----|------|-------|--------|---------|
| BH25   31/07/2019   1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 11/07/2019   | 1002 | 0    | 17 | Superficial - | 1 | 50 | 0.1 | 0   | 19.1 | 1  | 197 | 0.3  | 7.41  | 0.0003 | 0       |
| BH25  BH26  BH26  BH27  BH27  BH28  BH29   |        | 21/07/2019   | 998  | 0    | 17 |               | 1 | 50 | 0   | 0   | 20.2 | 0  | 36  | 0    | 9.28  | 0      | 0       |
| BH25   20/08/2019   1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 31/07/2019   | 1002 | 0    | 17 |               | 1 | 50 | 0   | 0   | 18.8 | 0  | 26  | 0    | 8.62  | 0      | 0       |
| BH25   23/08/2019   1000   0.02   17   09/09/2019   997   0.02   17   17   2   2   17   17   2   2   17   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 06/08/2019   | 990  | 0    | 17 |               | 1 | 50 | 0   | 0   | 14.2 | 0  | 10  | 0    | 9.03  | 0      | 0       |
| Page   29/08/2019   1000   0.02   17   06/09/2019   997   0.02   17   17   17   18   18   18   19   18   19   19   18   19   1000   10   18   18   19   10   18   19   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   18   19   10   10   18   19   10   18   19   10   18   19   10   10   18   19   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   18   19   10   10   12   18   19   10   10   12   18   19   10   10   12   18   19   10   10   12   18   19   10   10   12   18   19   10   10   12   18   19   10   10   12   18   19   10   10   12   13   10   10   10   18   19   19   10   10   12   13   10   10   10   10   10   18   19   19   10   10   12   13   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 20/08/2019   | 1006 | 0    | 17 |               | 1 | 50 | 0.1 | 0   | 17.3 | 0  | 0   | 0    | 9.03  | 0      | 0       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BH25   | 29/08/2019   | 1000 | 0.02 | 17 |               | 1 | 50 | 0   | 0   | 15.2 | 0  | 0   | 0    | 8.94  | 0      | 0       |
| 11/07/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 06/09/2019   | 997  | 0.02 | 17 |               | 1 | 50 | 0   | 0   | 13.8 | 0  | 0   | 0    | 9.03  | 0      | 0       |
| Nax (Min C2)   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1            |      |      | 17 |               |   |    | 2.8 | 0.9 | 19.9 | 12 | 34  | 0    | 7.18  | 0      | 0       |
| Max (Min O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 2            |      |      | 17 |               |   |    | 5   | 0.3 | 18   | 1  | 10  | -3.7 | 7.06  | -0.185 | -0.0111 |
| 11/07/2019   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 3            |      |      | 17 |               |   |    | 4.1 | 0.1 | 18.2 | 0  | 11  | 0.3  | 7.02  | 0.0123 | 0.0003  |
| BH26 BH26 BH26 BH26 BH26 BH26 BH26 BH27 BH27 BH27 BH27 BH27 BH27 BH27 BH28 BH28 BH28 BH28 BH28 BH28 BH28 BH28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | Max (Min O2) |      |      |    |               |   |    | 5   | 0.9 | 13.8 | 12 | 197 | 0.3  |       | 0.015  | 0.0027  |
| BH26 BH26 BH26 BH26 BH26 BH26 BH26 BH27 BH27 BH27 BH27 BH27 BH27 BH27 BH28 BH28 BH28 BH28 BH28 BH28 BH28 BH28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |              |      |      |    |               |   |    |     |     |      |    |     |      |       |        |         |
| BH26 BH26 BH26 BH26 BH27 BH27 BH27 BH27 BH27 BH27 BH27 BH27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 11/07/2019   |      |      | 5  |               |   |    |     |     |      |    |     |      |       |        |         |
| BH26    Cof/08/2019   984   0   5   5   20/08/2019   1008   0.14   5   5   5   29/08/2019   1000   0.1   5   5   5   29/08/2019   1000   0.1   5   5   5   1   1   50   0   0   19.6   0   98   0   4.75   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 21/07/2019   |      |      | 5  |               |   |    |     |     |      |    |     |      |       |        |         |
| BH26 BH26  BH26  BH26  BH27  BH28  BH28  BH28  BH28  BH28  BH29  B |        | 31/07/2019   |      |      | 5  |               |   |    |     |     |      |    |     |      |       |        |         |
| BH26 29/08/2019 1000 0.1 5   Superficial Deposits   1 50 0.3 0 11.1 1 295 0.3 4.94 0.0009 0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 06/08/2019   | 984  | ٥    | 5  |               | 1 | 50 | 0   | 0   | 19.6 | 0  | 98  | 0    | 4.75  | 0      | 0       |
| BH26   29/08/2019   1000   0.1   5   06/09/2019   997   0.1   5   0   1   5   0   0.3   0   11.1   1   295   0.3   4.94   0.0009   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 20/08/2019   | 1008 | 0.14 | 5  |               | 1 | 50 | 0   | 0   | 19.7 | 1  | 169 | 0.1  | 4.84  | 0      | 0       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BH26   | 29/08/2019   | 1000 | 0.1  | 5  |               | 1 | 50 | 0.3 | 0   | 11.1 | 1  | 295 | 0.3  | 4.94  | 0.0009 | 0       |
| BH27  BH27  BH27  BH27  BH27  BH27  BH28  BH29   |        | 06/09/2019   | 997  | 0.1  | 5  |               | 1 | 50 | 0.3 | 0   | 15.5 | 1  | 185 | 0.1  | 4.87  | 0.0003 | 0       |
| Nax (Min O2)   Section     |        | 1            |      |      | 5  |               |   |    | 0.9 | 0.1 | 8    | 0  | 11  | 0.1  | 4.76  | 0.0009 | 0.0001  |
| HAX (Min O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 2            |      |      | 5  |               |   |    | 0.5 | 0.2 | 12   | 0  | 0   | 0.1  | 4.83  | 0.0005 | 0.0002  |
| H27    11/07/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 3            |      |      | 5  |               |   |    | 0.5 | 0.2 | 11.9 | 0  | 1   | 0.3  | 5.01  | 0.0015 | 0.0006  |
| BH27  BH27    Signature   Fig. 2   Fig. |        | Max (Min O2) |      |      |    |               |   |    | 0.9 | 0.2 | 8    | 1  | 295 | 0.3  |       | 0.0027 | 0.0006  |
| BH27  BH27    Signature   Fig. 2   Fig. |        |              |      |      |    |               |   |    |     |     |      |    |     |      |       |        |         |
| HA27  HH27  HH27  HH27  HH27  HH27  HH27  HH28  HH29   |        | 11/07/2019   |      |      | 18 |               |   |    |     |     |      |    |     |      |       |        |         |
| HA27    06/08/2019   985   0   18   20/08/2019   1008   0.1   18   29/08/2019   1001   0.2   18   06/09/2019   997   0.14   18   150   0   0.1   21.2   0   0   0.2   13.06   0   0   0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 21/07/2019   |      |      | 18 |               |   |    |     |     |      |    |     |      |       |        |         |
| BH27  BH27  20/08/2019 1008 0.1 18 29/08/2019 1001 0.2 18 06/09/2019 997 0.14 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 2 0 18 3 0 18 4 0 18 2 0 18 2 0 18 3 0 18 4 0 0.1 18.8 0 0 0 0.2 13.06 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 31/07/2019   | 996  | 0    | 18 |               | 1 | 50 | 0   | 0   | 18.9 | 0  | 12  | 0    | 12.86 | 0      | 0       |
| BH27 29/08/2019 1001 0.2 18 Weathered 1 50 0 0 18.8 0 0 0.2 13.06 0 0 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 06/08/2019   | 985  | 0    | 18 |               | 1 | 50 | 0   | 0.9 | 16.9 | 0  | 12  | 0    | 12.83 | 0      | 0       |
| BH2/ 06/09/2019 997 0.14 18 Bedrock 1 50 0 0.1 21.2 0 0 0 0.1 13.1 0 0.0001 1 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 20/08/2019   | 1008 | 0.1  | 18 |               | 1 | 50 | 0   | 0   | 20.1 | 0  | 140 | 0.1  | 12.99 | 0      | 0       |
| 06/09/2019   997   0.14   18   Bedrock   1   50   0   0.1   21.2   0   0   0.1   13.1   0   0.0001     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D. 107 | 29/08/2019   | 1001 | 0.2  | 18 | Weathered     | 1 | 50 | 0   | 0   | 18.8 | 0  | 0   | 0.2  | 13.06 | 0      | 0       |
| 2     18     0.1     3.4     17.6     0     0     0.1     12.53     0.0001     0.0034       3     18     0.1     1.5     19.5     0     1     0.1     12.48     0.0001     0.0015       4     18     0.3     1.5     19     0     5     0.3     12.41     0.0009     0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BH27   | 06/09/2019   | 997  | 0.14 | 18 | Bedrock       | 1 | 50 | 0   | 0.1 | 21.2 | 0  | 0   | 0.1  | 13.1  | 0      | 0.0001  |
| 3 18 0.1 1.5 19.5 0 1 0.1 12.48 0.001 0.0015<br>4 0 18 0.3 1.5 19 0 5 0.3 12.41 0.0009 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 1            |      |      | 18 |               |   |    |     |     |      |    |     |      |       |        |         |
| 4 18 0.3 1.5 19 0 5 0.3 12.41 0.0009 0.0045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 2            |      |      | 18 |               |   |    | 0.1 | 3.4 | 17.6 | 0  | 0   | 0.1  | 12.53 | 0.0001 | 0.0034  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3            |      |      | 18 |               |   |    | 0.1 | 1.5 | 19.5 | 0  | 1   | 0.1  | 12.48 | 0.0001 | 0.0015  |
| Max (Min O2) 0.3 3.4 16.9 0 140 0.3 13.1 0.0009 0.0102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 4            |      |      | 18 |               |   |    | 0.3 | 1.5 | 19   | 0  | 5   | 0.3  | 12.41 | 0.0009 | 0.0045  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Max (Min O2) |      |      |    |               |   |    | 0.3 | 3.4 | 16.9 | 0  | 140 | 0.3  | 13.1  | 0.0009 | 0.0102  |